Sorokin Anatoly A, Pekov Stanislav I, Zavorotnyuk Denis S, Shamraeva Mariya M, Bormotov Denis S, Popov Igor A
Laboratory of Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
Mass Spectrometry Laboratory, Skolkovo Institute of Science and Technology, Moscow, Russia.
Mass Spectrom Rev. 2025 Jan-Feb;44(1):74-88. doi: 10.1002/mas.21886. Epub 2024 Apr 26.
This article provides a comprehensive overview of the applications of methods of machine learning (ML) and artificial intelligence (AI) in ambient ionization mass spectrometry (AIMS). AIMS has emerged as a powerful analytical tool in recent years, allowing for rapid and sensitive analysis of various samples without the need for extensive sample preparation. The integration of ML/AI algorithms with AIMS has further expanded its capabilities, enabling enhanced data analysis. This review discusses ML/AI algorithms applicable to the AIMS data and highlights the key advancements and potential benefits of utilizing ML/AI in the field of mass spectrometry, with a focus on the AIMS community.
本文全面概述了机器学习(ML)和人工智能(AI)方法在常压电离质谱(AIMS)中的应用。近年来,AIMS已成为一种强大的分析工具,无需进行大量样品制备即可对各种样品进行快速灵敏的分析。ML/AI算法与AIMS的集成进一步扩展了其功能,实现了增强的数据分析。本综述讨论了适用于AIMS数据的ML/AI算法,并重点介绍了在质谱领域利用ML/AI的关键进展和潜在益处,重点关注AIMS领域。