Suppr超能文献

现代机器学习在常压电离质谱中的应用。

Modern machine-learning applications in ambient ionization mass spectrometry.

作者信息

Sorokin Anatoly A, Pekov Stanislav I, Zavorotnyuk Denis S, Shamraeva Mariya M, Bormotov Denis S, Popov Igor A

机构信息

Laboratory of Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.

Mass Spectrometry Laboratory, Skolkovo Institute of Science and Technology, Moscow, Russia.

出版信息

Mass Spectrom Rev. 2025 Jan-Feb;44(1):74-88. doi: 10.1002/mas.21886. Epub 2024 Apr 26.

Abstract

This article provides a comprehensive overview of the applications of methods of machine learning (ML) and artificial intelligence (AI) in ambient ionization mass spectrometry (AIMS). AIMS has emerged as a powerful analytical tool in recent years, allowing for rapid and sensitive analysis of various samples without the need for extensive sample preparation. The integration of ML/AI algorithms with AIMS has further expanded its capabilities, enabling enhanced data analysis. This review discusses ML/AI algorithms applicable to the AIMS data and highlights the key advancements and potential benefits of utilizing ML/AI in the field of mass spectrometry, with a focus on the AIMS community.

摘要

本文全面概述了机器学习(ML)和人工智能(AI)方法在常压电离质谱(AIMS)中的应用。近年来,AIMS已成为一种强大的分析工具,无需进行大量样品制备即可对各种样品进行快速灵敏的分析。ML/AI算法与AIMS的集成进一步扩展了其功能,实现了增强的数据分析。本综述讨论了适用于AIMS数据的ML/AI算法,并重点介绍了在质谱领域利用ML/AI的关键进展和潜在益处,重点关注AIMS领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验