Suppr超能文献

数字时代的人工智能与失语症:批判性综述

AI and Aphasia in the Digital Age: A Critical Review.

作者信息

Privitera Adam John, Ng Siew Hiang Sally, Kong Anthony Pak-Hin, Weekes Brendan Stuart

机构信息

Centre for Research and Development in Learning, Nanyang Technological University, Singapore 637335, Singapore.

Institute for Pedagogical Innovation, Research, and Excellence, Nanyang Technological University, Singapore 637335, Singapore.

出版信息

Brain Sci. 2024 Apr 16;14(4):383. doi: 10.3390/brainsci14040383.

Abstract

Aphasiology has a long and rich tradition of contributing to understanding how culture, language, and social environment contribute to brain development and function. Recent breakthroughs in AI can transform the role of aphasiology in the digital age by leveraging speech data in all languages to model how damage to specific brain regions impacts linguistic universals such as grammar. These tools, including generative AI (ChatGPT) and natural language processing (NLP) models, could also inform practitioners working with clinical populations in the assessment and treatment of aphasia using AI-based interventions such as personalized therapy and adaptive platforms. Although these possibilities have generated enthusiasm in aphasiology, a rigorous interrogation of their limitations is necessary before AI is integrated into practice. We explain the history and first principles of reciprocity between AI and aphasiology, highlighting how lesioning neural networks opened the black box of cognitive neurolinguistic processing. We then argue that when more data from aphasia across languages become digitized and available online, deep learning will reveal hitherto unreported patterns of language processing of theoretical interest for aphasiologists. We also anticipate some problems using AI, including language biases, cultural, ethical, and scientific limitations, a misrepresentation of marginalized languages, and a lack of rigorous validation of tools. However, as these challenges are met with better governance, AI could have an equitable impact.

摘要

失语症学在理解文化、语言和社会环境如何影响大脑发育及功能方面有着悠久而丰富的传统。人工智能领域的最新突破能够通过利用所有语言的语音数据来模拟特定脑区损伤如何影响诸如语法等语言共性,从而改变失语症学在数字时代的作用。这些工具,包括生成式人工智能(ChatGPT)和自然语言处理(NLP)模型,也能够为治疗临床患者的从业者在使用基于人工智能的干预措施(如个性化治疗和自适应平台)评估和治疗失语症方面提供参考。尽管这些可能性在失语症学领域引发了热情,但在将人工智能整合到实践之前,对其局限性进行严格审视是必要的。我们解释了人工智能与失语症学之间相互作用的历史和首要原则,强调了对神经网络进行损伤研究如何打开了认知神经语言学处理的黑匣子。然后我们认为,当来自更多语言的失语症数据被数字化并在线可用时,深度学习将揭示迄今未被报道的、对失语症学家具有理论意义的语言处理模式。我们还预测了使用人工智能时会出现的一些问题,包括语言偏见、文化、伦理和科学局限性、对边缘化语言的错误呈现以及工具缺乏严格验证。然而,随着通过更好的治理应对这些挑战,人工智能可能会产生公平的影响。

相似文献

1
AI and Aphasia in the Digital Age: A Critical Review.
Brain Sci. 2024 Apr 16;14(4):383. doi: 10.3390/brainsci14040383.
3
The Advent of Generative Language Models in Medical Education.
JMIR Med Educ. 2023 Jun 6;9:e48163. doi: 10.2196/48163.
4
AI-assisted assessment and treatment of aphasia: a review.
Front Public Health. 2024 Aug 29;12:1401240. doi: 10.3389/fpubh.2024.1401240. eCollection 2024.
5
Brief Review and Primer of Key Terminology for Artificial Intelligence and Machine Learning in Hypertension.
Hypertension. 2025 Jan;82(1):26-35. doi: 10.1161/HYPERTENSIONAHA.123.22347. Epub 2024 Jul 16.
6
[Subverting the Future of Teaching: Artificial Intelligence Innovation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):20-25. doi: 10.6224/JN.202404_71(2).04.
7
From concept to practice: a scoping review of the application of AI to aphasia diagnosis and management.
Disabil Rehabil. 2024 Apr;46(7):1288-1297. doi: 10.1080/09638288.2023.2199463. Epub 2023 May 12.
8
Is generative artificial intelligence the next step toward a personalized hemodialysis?
Rev Invest Clin. 2023 Dec 18;75(6):309-317. doi: 10.24875/RIC.23000162.
9
Artificial Intelligence Chatbots in Allergy and Immunology Practice: Where Have We Been and Where Are We Going?
J Allergy Clin Immunol Pract. 2023 Sep;11(9):2697-2700. doi: 10.1016/j.jaip.2023.05.042. Epub 2023 Jun 8.
10
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.
Lab Invest. 2023 Nov;103(11):100255. doi: 10.1016/j.labinv.2023.100255. Epub 2023 Sep 26.

引用本文的文献

1
Treatment of aphasia in linguistically diverse populations: current and future directions.
Front Psychol. 2025 Aug 14;16:1612413. doi: 10.3389/fpsyg.2025.1612413. eCollection 2025.
2
Research trends in post-stroke aphasia (2004-2024): a bibliometric and visualized analysis.
Front Neurol. 2025 Jun 25;16:1588130. doi: 10.3389/fneur.2025.1588130. eCollection 2025.
3
Artificial Intelligence in Communication Sciences and Disorders: Introduction to the Forum.
J Speech Lang Hear Res. 2024 Nov 7;67(11):4157-4161. doi: 10.1044/2024_JSLHR-24-00594. Epub 2024 Oct 17.
4
AI-assisted assessment and treatment of aphasia: a review.
Front Public Health. 2024 Aug 29;12:1401240. doi: 10.3389/fpubh.2024.1401240. eCollection 2024.

本文引用的文献

1
Optimizing Communication in Ataxia: A Multifaceted Approach to Alternative and Augmentative Communication (AAC).
Cerebellum. 2024 Oct;23(5):2142-2151. doi: 10.1007/s12311-024-01675-0. Epub 2024 Mar 7.
2
The copenhagen cross-linguistic naming test (C-CLNT): Development and validation in a multicultural memory clinic population.
J Int Neuropsychol Soc. 2023 Dec;29(10):911-921. doi: 10.1017/S1355617723000437. Epub 2023 Nov 22.
3
Shifting machine learning for healthcare from development to deployment and from models to data.
Nat Biomed Eng. 2022 Dec;6(12):1330-1345. doi: 10.1038/s41551-022-00898-y. Epub 2022 Jul 4.
4
Current Approaches to the Treatment of Post-Stroke Aphasia.
J Stroke. 2021 May;23(2):183-201. doi: 10.5853/jos.2020.05015. Epub 2021 May 31.
5
Predictors of Poststroke Aphasia Recovery: A Systematic Review-Informed Individual Participant Data Meta-Analysis.
Stroke. 2021 May;52(5):1778-1787. doi: 10.1161/STROKEAHA.120.031162. Epub 2021 Mar 15.
6
Considerations for a More Ethical Approach to Data in AI: On Data Representation and Infrastructure.
Front Big Data. 2020 Sep 2;3:25. doi: 10.3389/fdata.2020.00025. eCollection 2020.
7
Machine learning-based multimodal prediction of language outcomes in chronic aphasia.
Hum Brain Mapp. 2021 Apr 15;42(6):1682-1698. doi: 10.1002/hbm.25321. Epub 2020 Dec 30.
8
Aphasia in Alzheimer's Disease and Other Dementias (ADOD): Evidence From Chinese.
Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520949708. doi: 10.1177/1533317520949708.
9
Constraint-induced aphasia therapy for patients with aphasia: A systematic review.
Int J Nurs Sci. 2020 May 28;7(3):349-358. doi: 10.1016/j.ijnss.2020.05.005. eCollection 2020 Jul 10.
10
The ethics of AI in health care: A mapping review.
Soc Sci Med. 2020 Sep;260:113172. doi: 10.1016/j.socscimed.2020.113172. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验