具有生物活性玻璃-萘普生涂层的新型FeO纳米颗粒:合成、表征及生物活性的体外评估
Novel FeO Nanoparticles with Bioactive Glass-Naproxen Coating: Synthesis, Characterization, and In Vitro Evaluation of Bioactivity.
作者信息
Valverde Thalita Marcolan, Dos Santos Viviane Martins Rebello, Viana Pedro Igor Macário, Costa Guilherme Mattos Jardim, de Goes Alfredo Miranda, Sousa Lucas Resende Dutra, Xavier Viviane Flores, Vieira Paula Melo de Abreu, de Lima Silva Daniel, Domingues Rosana Zacarias, Ferreira José Maria da Fonte, Andrade Ângela Leão
机构信息
Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil.
Departamento de Química, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil.
出版信息
Int J Mol Sci. 2024 Apr 12;25(8):4270. doi: 10.3390/ijms25084270.
Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.
对生物材料的免疫反应与其表面性质密切相关,可产生慢性炎症和纤维化,导致植入失败。本研究调查了包覆二氧化硅并掺入抗炎药物萘普生的磁性纳米颗粒的研发情况,旨在用于多功能生物医学应用。使用多种技术对合成的纳米颗粒进行了表征,证实了磁铁矿的存在以及富含二氧化硅的生物活性玻璃(BG)层的形成。体外研究表明,纳米颗粒具有生物活性,浸入模拟体液中时会形成磷灰石表面层,并且与骨细胞具有生物相容性,具有良好的活力和碱性磷酸酶活性。游离或封装的萘普生均可降低炎症标志物一氧化氮的产生,而在本研究中单独的BG涂层未显示出抗炎作用。总体而言,包覆BG和萘普生的磁性纳米颗粒因其生物相容性、生物活性和成骨潜力,在生物医学应用方面显示出前景,尤其是在巨噬细胞和骨领域具有抗炎活性。