文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Development of Scaffolds with Chitosan Magnetically Activated with Cobalt Nanoferrite: A Study on Physical-Chemical, Mechanical, Cytotoxic and Antimicrobial Behavior.

作者信息

Guedes Danyelle Garcia, Guedes Gabryella Garcia, Silva Jessé de Oliveira da, Silva Adriano Lima da, Luna Carlos Bruno Barreto, Damasceno Bolívar Ponciano Goulart de Lima, Costa Ana Cristina Figueiredo de Melo

机构信息

Laboratory of Ceramic Materials Synthesis, Federal University of Campina Grande, 882 Aprígio Veloso Street-Bodocongó, Campina Grande 58429-900, PB, Brazil.

Pharmaceutical Product Development and Characterisation Laboratory, State University of Paraíba, 351 Baraúnas Street-Universitário District, Campina Grande 58429-500, PB, Brazil.

出版信息

Pharmaceuticals (Basel). 2024 Oct 5;17(10):1332. doi: 10.3390/ph17101332.


DOI:10.3390/ph17101332
PMID:39458973
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11509991/
Abstract

: This study investigates the development of 3D chitosan-x-cobalt ferrite scaffolds (x = 5, 7.5, and 10 wt%) with interconnected porosity for potential biomedical applications. The objective was to evaluate the effects of magnetic particle incorporation on the scaffolds' structural, mechanical, magnetic, and biological properties, specifically focusing on their biocompatibility and antimicrobial performance. : Scaffolds were synthesized using freeze-drying, while cobalt ferrite nanoparticles were produced via a pilot-scale combustion reaction. The scaffolds were characterized for their physical and chemical properties, including porosity, swelling, and mechanical strength. Hydrophilicity was assessed through contact angle measurements. Antimicrobial efficacy was evaluated using time kill kinetics and agar diffusion assays, and biocompatibility was confirmed through cytotoxicity tests. : The incorporation of cobalt ferrite increased magnetic responsiveness, altered porosity profiles, and influenced swelling, biodegradation, and compressive strength, with a maximum value of 87 kPa at 7.5 wt% ferrite content. The scaffolds maintained non-toxicity and demonstrated bactericidal activity. The optimal concentration for achieving a balance between structural integrity and biological performance was found at 7.5 wt% cobalt ferrite. : These findings suggest that magnetic chitosan-cobalt ferrite scaffolds possess significant potential for use in biomedical applications, including tissue regeneration and advanced healing therapies. The incorporation of magnetic properties enhances both the structural and biological functionalities, presenting promising opportunities for innovative therapeutic approaches in reconstructive procedures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/d04f8d14c6bc/pharmaceuticals-17-01332-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/ec20f3a727b2/pharmaceuticals-17-01332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/386df9e764e6/pharmaceuticals-17-01332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/51233620ce95/pharmaceuticals-17-01332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/34e34faf2949/pharmaceuticals-17-01332-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/cd10b92c2fa0/pharmaceuticals-17-01332-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/544cbe48f33b/pharmaceuticals-17-01332-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/8f69aad30a09/pharmaceuticals-17-01332-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/a0fd886d815a/pharmaceuticals-17-01332-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/0922e156c704/pharmaceuticals-17-01332-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/2af3da8e435f/pharmaceuticals-17-01332-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/d3dbff6dd0f6/pharmaceuticals-17-01332-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/5b7bdcce9475/pharmaceuticals-17-01332-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/d04f8d14c6bc/pharmaceuticals-17-01332-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/ec20f3a727b2/pharmaceuticals-17-01332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/386df9e764e6/pharmaceuticals-17-01332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/51233620ce95/pharmaceuticals-17-01332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/34e34faf2949/pharmaceuticals-17-01332-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/cd10b92c2fa0/pharmaceuticals-17-01332-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/544cbe48f33b/pharmaceuticals-17-01332-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/8f69aad30a09/pharmaceuticals-17-01332-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/a0fd886d815a/pharmaceuticals-17-01332-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/0922e156c704/pharmaceuticals-17-01332-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/2af3da8e435f/pharmaceuticals-17-01332-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/d3dbff6dd0f6/pharmaceuticals-17-01332-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/5b7bdcce9475/pharmaceuticals-17-01332-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a53/11509991/d04f8d14c6bc/pharmaceuticals-17-01332-g013.jpg

相似文献

[1]
Development of Scaffolds with Chitosan Magnetically Activated with Cobalt Nanoferrite: A Study on Physical-Chemical, Mechanical, Cytotoxic and Antimicrobial Behavior.

Pharmaceuticals (Basel). 2024-10-5

[2]
Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration.

Biomed Mater. 2022-9-30

[3]
Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

Int J Biol Macromol. 2017-6-28

[4]
Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers.

Biomed Mater. 2020-8-21

[5]
Mutual influence of selenium nanoparticles and FGF2-STAB on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation.

J Nanobiotechnology. 2021-4-13

[6]
Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria.

Mater Sci Eng C Mater Biol Appl. 2018-5-15

[7]
Green Synthesis of Co-Zn Spinel Ferrite Nanoparticles: Magnetic and Intrinsic Antimicrobial Properties.

Materials (Basel). 2020-11-6

[8]
Evaluating mechanical and biological responses of bipolymeric drug-chitosan-hydroxyapatite scaffold for wounds: Fabrication, characterization, and finite element analysis.

Burns. 2024-12

[9]
Solvothermal synthesis of cobalt ferrite hollow spheres with chitosan.

Mater Sci Eng C Mater Biol Appl. 2017-9-1

[10]
Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application.

Life Sci. 2021-1-1

本文引用的文献

[1]
Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review.

J Funct Biomater. 2024-8-14

[2]
Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle.

Bioact Mater. 2024-6-15

[3]
Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration.

Int J Biol Macromol. 2024-8

[4]
Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration.

Int J Mol Sci. 2024-5-30

[5]
Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review.

AAPS PharmSciTech. 2024-6-14

[6]
Novel FeO Nanoparticles with Bioactive Glass-Naproxen Coating: Synthesis, Characterization, and In Vitro Evaluation of Bioactivity.

Int J Mol Sci. 2024-4-12

[7]
Assessment of chitosan-coated zinc cobalt ferrite nanoparticle as a multifunctional theranostic platform facilitating pH-sensitive drug delivery and OCT image contrast enhancement.

Int J Pharm. 2024-4-10

[8]
Chitosan/MWCNTs nanocomposite coating on 3D printed scaffold of poly 3-hydroxybutyrate/magnetic mesoporous bioactive glass: A new approach for bone regeneration.

Int J Biol Macromol. 2024-3

[9]
Fabrication of magnetic nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing hydroxyapatite and clay modified with graphene oxide: Evaluation of their properties for bone tissue engineering applications.

J Mech Behav Biomed Mater. 2024-2

[10]
Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering.

Biomed Pharmacother. 2023-12-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索