Suppr超能文献

使用机器学习和人类胰岛单细胞转录组测量来模拟 1 型糖尿病的进展。

Modeling type 1 diabetes progression using machine learning and single-cell transcriptomic measurements in human islets.

机构信息

Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Cell Rep Med. 2024 May 21;5(5):101535. doi: 10.1016/j.xcrm.2024.101535. Epub 2024 Apr 26.

Abstract

Type 1 diabetes (T1D) is a chronic condition in which beta cells are destroyed by immune cells. Despite progress in immunotherapies that could delay T1D onset, early detection of autoimmunity remains challenging. Here, we evaluate the utility of machine learning for early prediction of T1D using single-cell analysis of islets. Using gradient-boosting algorithms, we model changes in gene expression of single cells from pancreatic tissues in T1D and non-diabetic organ donors. We assess if mathematical modeling could predict the likelihood of T1D development in non-diabetic autoantibody-positive donors. While most autoantibody-positive donors are predicted to be non-diabetic, select donors with unique gene signatures are classified as T1D. Our strategy also reveals a shared gene signature in distinct T1D-associated models across cell types, suggesting a common effect of the disease on transcriptional outputs of these cells. Our study establishes a precedent for using machine learning in early detection of T1D.

摘要

1 型糖尿病(T1D)是一种由免疫细胞破坏胰岛β细胞导致的慢性疾病。尽管免疫疗法在延迟 T1D 发病方面取得了进展,但自身免疫的早期检测仍然具有挑战性。在这里,我们评估了使用胰岛单细胞分析进行 T1D 早期预测的机器学习的效用。我们使用梯度提升算法,对 T1D 患者和非糖尿病器官捐献者的胰腺组织中单个细胞的基因表达变化进行建模。我们评估数学模型是否可以预测非糖尿病自身抗体阳性供体发生 T1D 的可能性。虽然大多数自身抗体阳性供体被预测为非糖尿病患者,但具有独特基因特征的选择供体被归类为 T1D。我们的策略还揭示了不同 T1D 相关模型中不同细胞类型之间的共享基因特征,这表明该疾病对这些细胞的转录输出有共同的影响。我们的研究为 T1D 的早期检测中使用机器学习建立了先例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c27e/11148720/697cdfc86072/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验