Suppr超能文献

机器学习驱动的小儿1型糖尿病蜜月期识别及胰岛素管理优化

Machine Learning-driven Identification of the Honeymoon Phase in Pediatric Type 1 Diabetes and Optimizing Insulin Management.

作者信息

R Satheeskumar

机构信息

Narasaraopeta Engineering College, Department of Computer Science and Engineering, Andhra Pradesh, India

出版信息

J Clin Res Pediatr Endocrinol. 2025 Aug 22;17(3):278-287. doi: 10.4274/jcrpe.galenos.2025.2024-8-13. Epub 2025 Jan 24.

Abstract

OBJECTIVE

The honeymoon phase in type 1 diabetes (T1D) represents a temporary improvement in glycemic control but may complicate insulin management. The aim was to develop and validate a machine learning (ML)-driven method for accurately detecting this phase to optimize insulin therapy and prevent adverse outcomes.

METHODS

Data from pediatric T1D patients aged 6-17 years, including continuous glucose monitoring data, glucose management indicator (GMI) reports, hemoglobin A1c (HbA1c) values, and patient medical history, were used to train ML models including long short-term memory (LSTM) networks, transformer models, random forest, and gradient boosting machines (GBMs). These were designed to analyze glucose trends and identify the honeymoon phase in T1D patients.

RESULTS

The transformer model achieved the highest accuracy at 91%, followed by GBMs at 89%, LSTM at 88%, and random forest at 87%. Key features, such as glucose variability, insulin adjustments, GMI values, and HbA1c levels were critical to model performance. Accurate identification of the honeymoon phase enabled optimized insulin adjustments, enhancing glucose control and reducing hypoglycemia risk.

CONCLUSION

The ML-driven approach provides a robust method for detecting the honeymoon phase in T1D patients, demonstrating potential for improved personalized insulin management. The findings suggest significant benefits in patient outcomes, with future research focused on further validation and clinical integration.

摘要

目的

1型糖尿病(T1D)的蜜月期代表血糖控制的暂时改善,但可能使胰岛素管理复杂化。目的是开发并验证一种机器学习(ML)驱动的方法,用于准确检测此阶段,以优化胰岛素治疗并预防不良后果。

方法

使用6至17岁儿科T1D患者的数据,包括连续血糖监测数据、血糖管理指标(GMI)报告、糖化血红蛋白(HbA1c)值和患者病史,来训练包括长短期记忆(LSTM)网络、变压器模型、随机森林和梯度提升机(GBM)在内的ML模型。这些模型旨在分析血糖趋势并识别T1D患者的蜜月期。

结果

变压器模型的准确率最高,为91%,其次是GBM,为89%,LSTM为88%,随机森林为87%。血糖变异性、胰岛素调整、GMI值和HbA1c水平等关键特征对模型性能至关重要。准确识别蜜月期能够优化胰岛素调整,加强血糖控制并降低低血糖风险。

结论

ML驱动的方法为检测T1D患者的蜜月期提供了一种可靠的方法,显示出改善个性化胰岛素管理的潜力。研究结果表明对患者预后有显著益处,未来的研究将集中在进一步验证和临床整合方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验