Afrose Sharmin, Song Wenjia, Nemeroff Charles B, Lu Chang, Yao Danfeng Daphne
Department of Computer Science, Virginia Tech, Blacksburg, VA USA.
Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX USA.
Commun Med (Lond). 2022 Sep 1;2:111. doi: 10.1038/s43856-022-00165-w. eCollection 2022.
BACKGROUND: Many clinical datasets are intrinsically imbalanced, dominated by overwhelming majority groups. Off-the-shelf machine learning models that optimize the prognosis of majority patient types (e.g., healthy class) may cause substantial errors on the minority prediction class (e.g., disease class) and demographic subgroups (e.g., Black or young patients). In the typical one-machine-learning-model-fits-all paradigm, racial and age disparities are likely to exist, but unreported. In addition, some widely used whole-population metrics give misleading results. METHODS: We design a double prioritized (DP) bias correction technique to mitigate representational biases in machine learning-based prognosis. Our method trains customized machine learning models for specific ethnicity or age groups, a substantial departure from the one-model-predicts-all convention. We compare with other sampling and reweighting techniques in mortality and cancer survivability prediction tasks. RESULTS: We first provide empirical evidence showing various prediction deficiencies in a typical machine learning setting without bias correction. For example, missed death cases are 3.14 times higher than missed survival cases for mortality prediction. Then, we show DP consistently boosts the minority class recall for underrepresented groups, by up to 38.0%. DP also reduces relative disparities across race and age groups, e.g., up to 88.0% better than the 8 existing sampling solutions in terms of the relative disparity of minority class recall. Cross-race and cross-age-group evaluation also suggests the need for subpopulation-specific machine learning models. CONCLUSIONS: Biases exist in the widely accepted one-machine-learning-model-fits-all-population approach. We invent a bias correction method that produces specialized machine learning prognostication models for underrepresented racial and age groups. This technique may reduce potentially life-threatening prediction mistakes for minority populations.
背景:许多临床数据集本质上是不平衡的,由绝大多数群体主导。优化大多数患者类型(如健康类别)预后的现成机器学习模型可能在少数预测类别(如疾病类别)和人口亚组(如黑人或年轻患者)上导致重大错误。在典型的一个机器学习模型适用于所有情况的范式中,种族和年龄差异可能存在,但未被报告。此外,一些广泛使用的全人群指标会给出误导性结果。 方法:我们设计了一种双重优先(DP)偏差校正技术,以减轻基于机器学习的预后中的代表性偏差。我们的方法针对特定种族或年龄组训练定制的机器学习模型,这与一个模型预测所有情况的传统方法有很大不同。我们在死亡率和癌症生存率预测任务中与其他采样和重新加权技术进行比较。 结果:我们首先提供了经验证据,表明在没有偏差校正的典型机器学习设置中存在各种预测缺陷。例如,在死亡率预测中,漏报的死亡病例比漏报的存活病例高3.14倍。然后,我们表明DP持续提高了代表性不足群体的少数类召回率,最高可达38.0%。DP还减少了种族和年龄组之间的相对差异,例如,在少数类召回率的相对差异方面,比现有的8种采样解决方案高出88.ness="50%"> 结论:广泛接受的一个机器学习模型适用于所有人群的方法存在偏差。我们发明了一种偏差校正方法,为代表性不足的种族和年龄组生成专门的机器学习预后模型。这项技术可能会减少对少数群体潜在的危及生命的预测错误。
Pac Symp Biocomput. 2024
BMC Med Inform Decis Mak. 2017-12-19
JMIR Public Health Surveill. 2020-10-22
Int J Environ Res Public Health. 2020-3-12
JAMA Netw Open. 2021-4-1
JMIR Med Inform. 2022-5-31
NPJ Digit Med. 2025-6-14
J Neural Eng. 2025-6-13
PLOS Digit Health. 2025-6-5
Comput Struct Biotechnol J. 2025-4-25
Commun Med (Lond). 2025-3-11
BMC Med Inform Decis Mak. 2025-2-5
Lancet Digit Health. 2021-1
Nat Commun. 2021-2-17
Lancet Digit Health. 2020-12
Sci Data. 2019-6-17