文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

促血小板生成素模拟物刺激骨髓血管和基质龛以减轻急性放射综合征。

Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome.

机构信息

Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.

Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

Stem Cell Res Ther. 2024 Apr 29;15(1):123. doi: 10.1186/s13287-024-03734-z.


DOI:10.1186/s13287-024-03734-z
PMID:38679747
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11057170/
Abstract

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45, TER-119, CD31) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.

摘要

背景:急性辐射综合征(ARS)是在放射事故或放射事件中暴露于高剂量辐射后出现的。促进骨髓(BM)的再生,即造血干细胞和祖细胞(HSPCs),是减轻 ARS 和多器官衰竭的关键。JNJ-26366821 是一种聚乙二醇化血小板生成素模拟物(TPOm)肽,已被证明是治疗小鼠造血性 ARS(H-ARS)的有效医疗对策(MCM)。然而,TPOm 调节 BM 血管和基质龛以支持 HSPC 再生的活性尚未阐明。

方法:C57BL/6J 小鼠(9-14 周龄)接受 Cs 或 X 射线亚致死或致死全身照射(TBI),建立 H-ARS 模型。照射后 24 小时,小鼠皮下注射单次剂量的 TPOm(0.3mg/kg 或 1.0mg/kg)或 PBS(载体)。在 TBI 后和没有 TPOm 治疗的情况下,在第 4、7、10、14、18 和 21 天的平衡期和平衡期,采集 BM 进行组织学、BM 造血干细胞、内皮(EC)和间充质基质细胞(MSC)的流式细胞术以及全层共聚焦显微镜检查。为了生存,用辐射监测和称重小鼠 30 天。最后,对 BM 三阴性细胞(TNC;CD45、TER-119、CD31)进行单细胞 RNA 测序,以检查 TBI 后有无 TPOm 治疗的转录组学。

结果:在平衡期,TPOm 增加了循环血小板和 HSPCs、ECs 和 MSC 的数量。亚致死性 TBI 后,TPOm 改善了 BM 结构,促进了 HSPCs、ECs 和 MSC 的恢复。此外,TPOm 提高了正常和照射小鼠的 VEGF-C 水平。在致死性照射后,用 TPOm 治疗 Cs 和 X 射线照射后的小鼠,体重恢复和 30 天存活率提高。此外,TPOm 减少了血管扩张和通透性。最后,单细胞 RNA-seq 分析表明,TPOm 增加了 MSC 中胶原蛋白的表达,以增强其与 BM 中其他祖细胞的相互作用,并上调了 MSC 中的再生途径。

结论:TPOm 与 BM 血管和基质龛相互作用,局部支持造血重建,系统改善 TBI 后小鼠的生存。因此,这项工作证明了 TPOm 作为一种有效的辐射 MCM,可用于治疗 ARS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/e34607ac3283/13287_2024_3734_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/30b895772d5d/13287_2024_3734_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/63704cc041a8/13287_2024_3734_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/be8cd29ff887/13287_2024_3734_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/bb68c44f19ba/13287_2024_3734_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/d298a2bbf458/13287_2024_3734_Fig5a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/9af0eba1910b/13287_2024_3734_Fig6a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/e34607ac3283/13287_2024_3734_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/30b895772d5d/13287_2024_3734_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/63704cc041a8/13287_2024_3734_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/be8cd29ff887/13287_2024_3734_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/bb68c44f19ba/13287_2024_3734_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/d298a2bbf458/13287_2024_3734_Fig5a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/9af0eba1910b/13287_2024_3734_Fig6a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f6/11057170/e34607ac3283/13287_2024_3734_Fig7_HTML.jpg

相似文献

[1]
Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome.

Stem Cell Res Ther. 2024-4-29

[2]
Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome.

Res Sq. 2024-2-19

[3]
Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome.

Stem Cell Res Ther. 2024-3-13

[4]
Engineering biomimetic bone marrow niche with gene modified mesenchymal stromal cells for ex vivo culture of human hematopoietic stem and progenitor cells.

Stem Cell Res Ther. 2025-7-1

[5]
Preliminary high-dose irradiation of the recipient and associated damage of bone marrow stromal compartment enables bone marrow stroma transplantation.

Sci Rep. 2025-7-1

[6]
Mesenchymal Stem Cell-Derived Extracellular Vesicles Improve Survival and Enhance Hematopoietic Recovery in Mice Exposed to High-Dose Irradiation.

Stem Cells Dev. 2025-5

[7]
The Hematopoietic Syndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose Response Relationship.

Health Phys. 2015-11

[8]
Mesenchymal stem/stromal cells from human pluripotent stem cell-derived brain organoid enhance the ex vivo expansion and maintenance of hematopoietic stem/progenitor cells.

Stem Cell Res Ther. 2024-3-5

[9]
Human Muscle-Derived Vascular Stem Cells Can Support Hematopoietic Stem/Progenitor Cells In Vitro.

Stem Cells Int. 2025-6-17

[10]
Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation.

Stem Cell Res Ther. 2024-5-20

引用本文的文献

[1]
Development of Nanocarrier-Based Oral Pegfilgrastim Formulations for Mitigating Hematopoietic Acute Radiation Syndrome.

Adv Funct Mater. 2025-6-19

[2]
Identification of Potential Prophylactic Medical Countermeasures Against Acute Radiation Syndrome (ARS).

Int J Mol Sci. 2025-4-25

[3]
DSUP modified mesenchymal stem cells exert significant radiation protective effect by enhancing the hematopoietic niche.

Stem Cell Res Ther. 2025-5-1

[4]
Thrombopoietin mimetic reduces mouse lung inflammation and fibrosis after radiation by attenuating activated endothelial phenotypes.

JCI Insight. 2024-11-8

[5]
Thrombopoietin mimetic therapy alleviates radiation-induced bone marrow vascular injury in a bone marrow transplant mouse model.

Front Oncol. 2024-10-10

本文引用的文献

[1]
A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures.

Radiat Res. 2023-1-1

[2]
Orthovoltage X-Rays Exhibit Increased Efficacy Compared with γ-Rays in Preclinical Irradiation.

Cancer Res. 2022-8-3

[3]
Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821).

Sci Rep. 2022-3-3

[4]
Activated B Cells and Plasma Cells Are Resistant to Radiation Therapy.

Int J Radiat Oncol Biol Phys. 2022-2-1

[5]
Thrombopoietin from hepatocytes promotes hematopoietic stem cell regeneration after myeloablation.

Elife. 2021-8-31

[6]
Niches that regulate stem cells and hematopoiesis in adult bone marrow.

Dev Cell. 2021-7-12

[7]
Classes of Drugs that Mitigate Radiation Syndromes.

Front Pharmacol. 2021-5-18

[8]
Inference and analysis of cell-cell communication using CellChat.

Nat Commun. 2021-2-17

[9]
Prospective isolation of radiation induced erythroid stress progenitors reveals unique transcriptomic and epigenetic signatures enabling increased erythroid output.

Haematologica. 2020-11-1

[10]
Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections.

Front Endocrinol (Lausanne). 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索