Suppr超能文献

异质结构BiOClBr - BiOBr半导体的光催化驱动抗病毒活性

Photocatalytic-Driven Antiviral Activities of Heterostructured BiOClBr - BiOBr Semiconductors.

作者信息

Abbasi Razan, Gnayem Hani, Sasson Yoel

机构信息

Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

出版信息

ACS Omega. 2024 Apr 10;9(16):18183-18190. doi: 10.1021/acsomega.3c10310. eCollection 2024 Apr 23.

Abstract

Numerous methods for eliminating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being extensively examined in recent years as a result of the COVID-19 pandemic and its adverse effects on society. Photocatalysis is among the most encouraging solutions since it has the capacity to fully annihilate pathogens, surpassing conventional disinfecting methods. A heterostructured photocatalytic composite of (70%W BiOClBr with 30%W BiOBr) was prepared via a simple synthetic route that yielded microspheres ∼3-4 μm in diameter. The composite was evidenced to inactivate stubborn enveloped viruses. By utilizing scanning electron microscopy, transmission electron microscopy, N sorption, and X-ray diffraction, the morphology and the chemical composition of the heterostructured composite was revealed. Full elimination of SARS-CoV-2 occurred 5 min following the light-activation of the photocatalytic mixture. Illumination absence bared a slower yet effective result of full viral decomposition at a time span of 25 min. A comparable efficacious outcome was observed in the study case of vesicular stomatitis virus with complete diminishing within 30 min of visible light exposure.

摘要

由于新冠疫情及其对社会的不利影响,近年来人们广泛研究了多种消除严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的方法。光催化是最令人鼓舞的解决方案之一,因为它有能力完全消灭病原体,优于传统消毒方法。通过简单的合成路线制备了一种(70%W BiOClBr与30%W BiOBr)的异质结构光催化复合材料,得到了直径约3-4μm的微球。该复合材料被证明能使顽固的包膜病毒失活。通过扫描电子显微镜、透射电子显微镜、N吸附和X射线衍射,揭示了异质结构复合材料的形态和化学成分。光催化混合物光激活5分钟后,SARS-CoV-2被完全消除。在无光照的情况下,在25分钟的时间跨度内,病毒完全分解的效果较慢但有效。在水泡性口炎病毒的研究案例中也观察到了类似的有效结果,在可见光照射30分钟内病毒完全消失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f3/11044170/88c40f2dddc9/ao3c10310_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验