Statistics Department, University of Michigan, Ann Arbor, Michigan, United States of America.
Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2024 Apr 29;20(4):e1012032. doi: 10.1371/journal.pcbi.1012032. eCollection 2024 Apr.
Public health decisions must be made about when and how to implement interventions to control an infectious disease epidemic. These decisions should be informed by data on the epidemic as well as current understanding about the transmission dynamics. Such decisions can be posed as statistical questions about scientifically motivated dynamic models. Thus, we encounter the methodological task of building credible, data-informed decisions based on stochastic, partially observed, nonlinear dynamic models. This necessitates addressing the tradeoff between biological fidelity and model simplicity, and the reality of misspecification for models at all levels of complexity. We assess current methodological approaches to these issues via a case study of the 2010-2019 cholera epidemic in Haiti. We consider three dynamic models developed by expert teams to advise on vaccination policies. We evaluate previous methods used for fitting these models, and we demonstrate modified data analysis strategies leading to improved statistical fit. Specifically, we present approaches for diagnosing model misspecification and the consequent development of improved models. Additionally, we demonstrate the utility of recent advances in likelihood maximization for high-dimensional nonlinear dynamic models, enabling likelihood-based inference for spatiotemporal incidence data using this class of models. Our workflow is reproducible and extendable, facilitating future investigations of this disease system.
公共卫生决策必须考虑何时以及如何实施干预措施来控制传染病疫情。这些决策应该基于疫情数据以及当前对传播动态的理解。这些决策可以作为关于有科学依据的动态模型的统计问题提出。因此,我们遇到了基于随机、部分观测、非线性动态模型构建可信、数据驱动决策的方法学任务。这需要在生物保真度和模型简单性之间进行权衡,以及在所有复杂程度的模型中都存在模型指定不当的现实情况。我们通过海地 2010-2019 年霍乱疫情的案例研究来评估这些问题的当前方法学方法。我们考虑了三个由专家团队开发的用于提供疫苗接种政策建议的动态模型。我们评估了以前用于拟合这些模型的方法,并展示了改进的数据分析策略,从而提高了统计拟合度。具体来说,我们提出了用于诊断模型指定不当和随之开发改进模型的方法。此外,我们展示了最近在高维非线性动态模型中的似然最大化方面的进展对于利用这类模型进行时空发病率数据的似然推理的实用性。我们的工作流程是可重复和可扩展的,便于对该疾病系统进行未来的研究。