Suppr超能文献

用于部分观测交互系统的袋装滤波器。

Bagged filters for partially observed interacting systems.

作者信息

Ionides Edward L, Asfaw Kidus, Park Joonha, King Aaron A

机构信息

Department of Statistics, University of Michigan.

Department of Mathematics, University of Kansas.

出版信息

J Am Stat Assoc. 2023;118(542):1078-1089. doi: 10.1080/01621459.2021.1974867. Epub 2021 Oct 4.

Abstract

Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter also performs well on this task, though the bagged filter respects smoothness and conservation laws that a block particle filter can violate.

摘要

装袋法(即自助聚合)涉及将一组自助估计器组合起来。我们考虑使用装袋法从一组相互作用的随机动态系统的噪声或不完整测量中进行推断。每个系统称为一个单元,每个单元与一个空间位置相关联。一个具有启发性的例子出现在流行病学中,其中每个单元是一个城市:大多数传播发生在一个城市内,而城市之间的疾病传播会产生较小但在流行病学上很重要的相互作用。随着单元数量的增加,用于非线性非高斯系统推断的蒙特卡罗滤波方法可能会受到维度诅咒的影响。我们引入了装袋滤波器(BF)方法,该方法将一组蒙特卡罗滤波器组合起来,使用时空局部化权重在每个单元和时间选择成功的滤波器。我们得到了使用BF算法进行似然评估可以克服维度诅咒的条件,并且即使这些条件不成立,我们也证明了其适用性。在描述传染病传播的耦合种群动力学模型上,BF可以优于集合卡尔曼滤波器。块粒子滤波器在这项任务上也表现良好,不过装袋滤波器遵守块粒子滤波器可能违反的平滑性和守恒定律。

相似文献

1
Bagged filters for partially observed interacting systems.
J Am Stat Assoc. 2023;118(542):1078-1089. doi: 10.1080/01621459.2021.1974867. Epub 2021 Oct 4.
2
Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter.
Stat Comput. 2020 Sep;30(5):1497-1522. doi: 10.1007/s11222-020-09957-3. Epub 2020 Jun 26.
3
Panel Data Analysis via Mechanistic Models.
J Am Stat Assoc. 2019 Jun 7;115(531):1178-1188. doi: 10.1080/01621459.2019.1604367.
4
Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003583. doi: 10.1371/journal.pcbi.1003583. eCollection 2014 Apr.
5
Cross-Validated Bagged Learning.
J Multivar Anal. 2008 Mar;25(2):260-266. doi: 10.1016/j.jmva.2007.07.004.
6
A Stochastic Approximation-Langevinized Ensemble Kalman Filter Algorithm for State Space Models with Unknown Parameters.
J Comput Graph Stat. 2023;32(2):448-469. doi: 10.1080/10618600.2022.2107531. Epub 2022 Oct 7.
7
Comparison of the performance of particle filter algorithms applied to tracking of a disease epidemic.
Math Biosci. 2014 Sep;255:21-32. doi: 10.1016/j.mbs.2014.06.018. Epub 2014 Jul 9.
8
A comparison of nonlinear extensions to the ensemble Kalman filter: Gaussian anamorphosis and two-step ensemble filters.
Comput Geosci (Bassum). 2022;26(3):633-650. doi: 10.1007/s10596-022-10141-x. Epub 2022 Mar 5.
9
A hybrid particle-ensemble Kalman filter for problems with medium nonlinearity.
PLoS One. 2021 Mar 11;16(3):e0248266. doi: 10.1371/journal.pone.0248266. eCollection 2021.
10
State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.
ISA Trans. 2015 Sep;58:520-32. doi: 10.1016/j.isatra.2015.06.005. Epub 2015 Aug 21.

引用本文的文献

1
Inference on spatiotemporal dynamics for coupled biological populations.
J R Soc Interface. 2024 Jul;21(216):20240217. doi: 10.1098/rsif.2024.0217. Epub 2024 Jul 10.
2
Advanced methods for gene network identification and noise decomposition from single-cell data.
Nat Commun. 2024 Jun 8;15(1):4911. doi: 10.1038/s41467-024-49177-1.
3
Informing policy via dynamic models: Cholera in Haiti.
PLoS Comput Biol. 2024 Apr 29;20(4):e1012032. doi: 10.1371/journal.pcbi.1012032. eCollection 2024 Apr.

本文引用的文献

1
Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter.
Stat Comput. 2020 Sep;30(5):1497-1522. doi: 10.1007/s11222-020-09957-3. Epub 2020 Jun 26.
2
Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study.
Proc Biol Sci. 2020 Apr 29;287(1925):20191510. doi: 10.1098/rspb.2019.1510. Epub 2020 Apr 22.
3
Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).
Science. 2020 May 1;368(6490):489-493. doi: 10.1126/science.abb3221. Epub 2020 Mar 16.
4
Mining gold from implicit models to improve likelihood-free inference.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5242-5249. doi: 10.1073/pnas.1915980117. Epub 2020 Feb 20.
6
Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses.
Science. 2018 Aug 24;361(6404):800-803. doi: 10.1126/science.aat6777.
7
Modeling and inference for infectious disease dynamics: a likelihood-based approach.
Stat Sci. 2018 Feb;33(1):57-69. doi: 10.1214/17-STS636. Epub 2018 Feb 2.
8
The impact of past vaccination coverage and immunity on pertussis resurgence.
Sci Transl Med. 2018 Mar 28;10(434). doi: 10.1126/scitranslmed.aaj1748.
9
Monte Carlo profile confidence intervals for dynamic systems.
J R Soc Interface. 2017 Jul;14(132). doi: 10.1098/rsif.2017.0126.
10
Inference for dynamic and latent variable models via iterated, perturbed Bayes maps.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):719-24. doi: 10.1073/pnas.1410597112. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验