Ionides Edward L, Asfaw Kidus, Park Joonha, King Aaron A
Department of Statistics, University of Michigan.
Department of Mathematics, University of Kansas.
J Am Stat Assoc. 2023;118(542):1078-1089. doi: 10.1080/01621459.2021.1974867. Epub 2021 Oct 4.
Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter also performs well on this task, though the bagged filter respects smoothness and conservation laws that a block particle filter can violate.
装袋法(即自助聚合)涉及将一组自助估计器组合起来。我们考虑使用装袋法从一组相互作用的随机动态系统的噪声或不完整测量中进行推断。每个系统称为一个单元,每个单元与一个空间位置相关联。一个具有启发性的例子出现在流行病学中,其中每个单元是一个城市:大多数传播发生在一个城市内,而城市之间的疾病传播会产生较小但在流行病学上很重要的相互作用。随着单元数量的增加,用于非线性非高斯系统推断的蒙特卡罗滤波方法可能会受到维度诅咒的影响。我们引入了装袋滤波器(BF)方法,该方法将一组蒙特卡罗滤波器组合起来,使用时空局部化权重在每个单元和时间选择成功的滤波器。我们得到了使用BF算法进行似然评估可以克服维度诅咒的条件,并且即使这些条件不成立,我们也证明了其适用性。在描述传染病传播的耦合种群动力学模型上,BF可以优于集合卡尔曼滤波器。块粒子滤波器在这项任务上也表现良好,不过装袋滤波器遵守块粒子滤波器可能违反的平滑性和守恒定律。