Suppr超能文献

使用引导式中间重采样滤波器对高维隐式动态模型进行推断。

Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter.

作者信息

Park Joonha, Ionides Edward L

机构信息

Boston University, Boston, USA.

University of Michigan, Ann Arbor, USA.

出版信息

Stat Comput. 2020 Sep;30(5):1497-1522. doi: 10.1007/s11222-020-09957-3. Epub 2020 Jun 26.

Abstract

We propose a method for inference on moderately high-dimensional, nonlinear, non-Gaussian, partially observed Markov process models for which the transition density is not analytically tractable. Markov processes with intractable transition densities arise in models defined implicitly by simulation algorithms. Widely used particle filter methods are applicable to nonlinear, non-Gaussian models but suffer from the curse of dimensionality. Improved scalability is provided by ensemble Kalman filter methods, but these are inappropriate for highly nonlinear and non-Gaussian models. We propose a particle filter method having improved practical and theoretical scalability with respect to the model dimension. This method is applicable to implicitly defined models having analytically intractable transition densities. Our method is developed based on the assumption that the latent process is defined in continuous time and that a simulator of this latent process is available. In this method, particles are propagated at intermediate time intervals between observations and are resampled based on a forecast likelihood of future observations. We combine this particle filter with parameter estimation methodology to enable likelihood-based inference for highly nonlinear spatiotemporal systems. We demonstrate our methodology on a stochastic Lorenz 96 model and a model for the population dynamics of infectious diseases in a network of linked regions.

摘要

我们提出了一种用于对中等高维、非线性、非高斯、部分观测的马尔可夫过程模型进行推断的方法,这类模型的转移密度在解析上难以处理。具有难以处理的转移密度的马尔可夫过程出现在由模拟算法隐式定义的模型中。广泛使用的粒子滤波方法适用于非线性、非高斯模型,但存在维度灾难问题。集合卡尔曼滤波方法提供了更好的可扩展性,但这些方法不适用于高度非线性和非高斯模型。我们提出了一种在模型维度方面具有改进的实际和理论可扩展性的粒子滤波方法。该方法适用于具有解析上难以处理的转移密度的隐式定义模型。我们的方法是基于潜在过程在连续时间内定义且该潜在过程的模拟器可用这一假设而开发的。在这种方法中,粒子在观测之间的中间时间间隔进行传播,并根据未来观测的预测似然进行重采样。我们将这种粒子滤波与参数估计方法相结合,以实现对高度非线性时空系统基于似然的推断。我们在一个随机洛伦兹96模型和一个关于相互连接区域网络中传染病种群动态的模型上展示了我们的方法。

相似文献

2
Bagged filters for partially observed interacting systems.用于部分观测交互系统的袋装滤波器。
J Am Stat Assoc. 2023;118(542):1078-1089. doi: 10.1080/01621459.2021.1974867. Epub 2021 Oct 4.
5
Panel Data Analysis via Mechanistic Models.基于机理模型的面板数据分析。
J Am Stat Assoc. 2019 Jun 7;115(531):1178-1188. doi: 10.1080/01621459.2019.1604367.
7
Blended particle filters for large-dimensional chaotic dynamical systems.用于大维度混沌动力系统的混合粒子滤波器。
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7511-6. doi: 10.1073/pnas.1405675111. Epub 2014 May 13.

引用本文的文献

1
Informing policy via dynamic models: Cholera in Haiti.通过动态模型为政策提供信息:海地的霍乱疫情。
PLoS Comput Biol. 2024 Apr 29;20(4):e1012032. doi: 10.1371/journal.pcbi.1012032. eCollection 2024 Apr.
2
Bagged filters for partially observed interacting systems.用于部分观测交互系统的袋装滤波器。
J Am Stat Assoc. 2023;118(542):1078-1089. doi: 10.1080/01621459.2021.1974867. Epub 2021 Oct 4.

本文引用的文献

1
A particle flow filter for high-dimensional system applications.一种用于高维系统应用的粒子流滤波器。
Q J R Meteorol Soc. 2021 Apr;147(737):2352-2374. doi: 10.1002/qj.4028. Epub 2021 May 5.
9
The role of older children and adults in wild poliovirus transmission.大龄儿童和成人在野生脊灰病毒传播中的作用。
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10604-9. doi: 10.1073/pnas.1323688111. Epub 2014 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验