Suppr超能文献

科学与政策交叉领域的疾病传播与控制建模

Disease transmission and control modelling at the science-policy interface.

作者信息

McCabe Ruth, Donnelly Christl A

机构信息

Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB, Oxford, UK.

NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, UK.

出版信息

Interface Focus. 2021 Oct 12;11(6):20210013. doi: 10.1098/rsfs.2021.0013. eCollection 2021 Dec 6.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has disrupted the lives of billions across the world. Mathematical modelling has been a key tool deployed throughout the pandemic to explore the potential public health impact of an unmitigated epidemic. The results of such studies have informed governments' decisions to implement non-pharmaceutical interventions to control the spread of the virus. In this article, we explore the complex relationships between models, decision-making, the media and the public during the COVID-19 pandemic in the United Kingdom of Great Britain and Northern Ireland (UK). Doing so not only provides an important historical context of COVID-19 modelling and how it has shaped the UK response, but as the pandemic continues and looking towards future pandemic preparedness, understanding these relationships and how they might be improved is critical. As such, we have synthesized information gathered via three methods: a survey to publicly list attendees of the Scientific Advisory Group for Emergencies, the Scientific Pandemic Influenza Group on Modelling and other comparable advisory bodies, interviews with science communication experts and former scientific advisors, and reviewing some of the key COVID-19 modelling literature from 2020. Our research highlights the desire for increased bidirectional communication between modellers, decision-makers and the public, as well as the need to convey uncertainty inherent in transmission models in a clear manner. These aspects should be considered carefully ahead of the next emergency response.

摘要

2019年冠状病毒病(COVID-19)大流行扰乱了全球数十亿人的生活。数学建模一直是整个大流行期间所采用的关键工具,用于探索未加缓解的疫情可能对公共卫生产生的影响。此类研究结果为政府实施非药物干预措施以控制病毒传播的决策提供了依据。在本文中,我们探讨了大不列颠及北爱尔兰联合王国(英国)在COVID-19大流行期间模型、决策、媒体和公众之间的复杂关系。这样做不仅提供了COVID-19建模的重要历史背景以及它如何塑造了英国的应对措施,而且随着大流行的持续以及展望未来的大流行防范,理解这些关系以及如何改进它们至关重要。因此,我们综合了通过三种方法收集的信息:一项对紧急情况科学咨询小组、科学大流行流感建模小组及其他类似咨询机构的公开参会者名单进行的调查,对科学传播专家和前科学顾问的访谈,以及对2020年一些关键的COVID-19建模文献的回顾。我们的研究强调了建模者、决策者和公众之间加强双向沟通的愿望,以及以清晰方式传达传播模型中固有不确定性的必要性。在下一次应急响应之前,应仔细考虑这些方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dba/8504885/9a9827c874aa/rsfs20210013f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验