Suppr超能文献

一种用于三维超声图像中针分割的时间增强半监督训练框架。

A temporal enhanced semi-supervised training framework for needle segmentation in 3D ultrasound images.

机构信息

Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No 1037, Luoyu Road, Wuhan 430074, People's Republic of China.

Institute for Control Science, Russian Academy of Sciences, 65, Profsoyuznaya str., Moscow 117997, Russia.

出版信息

Phys Med Biol. 2024 May 21;69(11). doi: 10.1088/1361-6560/ad450b.

Abstract

Automated biopsy needle segmentation in 3D ultrasound images can be used for biopsy navigation, but it is quite challenging due to the low ultrasound image resolution and interference similar to the needle appearance. For 3D medical image segmentation, such deep learning networks as convolutional neural network and transformer have been investigated. However, these segmentation methods require numerous labeled data for training, have difficulty in meeting the real-time segmentation requirement and involve high memory consumption.In this paper, we have proposed the temporal information-based semi-supervised training framework for fast and accurate needle segmentation. Firstly, a novel circle transformer module based on the static and dynamic features has been designed after the encoders for extracting and fusing the temporal information. Then, the consistency constraints of the outputs before and after combining temporal information are proposed to provide the semi-supervision for the unlabeled volume. Finally, the model is trained using the loss function which combines the cross-entropy and Dice similarity coefficient (DSC) based segmentation loss with mean square error based consistency loss. The trained model with the single ultrasound volume input is applied to realize the needle segmentation in ultrasound volume.Experimental results on three needle ultrasound datasets acquired during the beagle biopsy show that our approach is superior to the most competitive mainstream temporal segmentation model and semi-supervised method by providing higher DSC (77.1% versus 76.5%), smaller needle tip position (1.28 mm versus 1.87 mm) and length (1.78 mm versus 2.19 mm) errors on the kidney dataset as well as DSC (78.5% versus 76.9%), needle tip position (0.86 mm versus 1.12 mm) and length (1.01 mm versus 1.26 mm) errors on the prostate dataset.The proposed method can significantly enhance needle segmentation accuracy by training with sequential images at no additional cost. This enhancement may further improve the effectiveness of biopsy navigation systems.

摘要

在 3D 超声图像中自动进行活检针分割可用于活检导航,但由于超声图像分辨率低且与针外观相似,因此存在很大的挑战。对于 3D 医学图像分割,已经研究了诸如卷积神经网络和转换器之类的深度学习网络。然而,这些分割方法需要大量的标记数据进行训练,难以满足实时分割要求,并且涉及高内存消耗。在本文中,我们提出了基于时间信息的半监督训练框架,以实现快速准确的针分割。首先,在编码器之后设计了一种新颖的基于静态和动态特征的圆形转换器模块,用于提取和融合时间信息。然后,提出了结合时间信息前后输出的一致性约束,以为未标记的体积提供半监督。最后,使用基于交叉熵和 Dice 相似系数(DSC)的分割损失与基于均方误差的一致性损失相结合的损失函数对模型进行训练。将输入单个超声体积的训练模型应用于超声体积实现针分割。在从比格犬活检中采集的三个针超声数据集上进行的实验结果表明,与最具竞争力的主流时间分割模型和半监督方法相比,我们的方法提供了更高的 DSC(77.1%对 76.5%),在肾脏数据集上更小的针尖位置(1.28mm 对 1.87mm)和长度(1.78mm 对 2.19mm)误差以及在前列腺数据集上更高的 DSC(78.5%对 76.9%),针尖位置(0.86mm 对 1.12mm)和长度(1.01mm 对 1.26mm)误差。通过以无额外成本使用连续图像进行训练,该方法可以显著提高针分割的准确性。这种增强可能会进一步提高活检导航系统的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验