Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.
Stat Med. 2024 Jun 15;43(13):2622-2640. doi: 10.1002/sim.10087. Epub 2024 Apr 29.
Longitudinal clinical trials for which recurrent events endpoints are of interest are commonly subject to missing event data. Primary analyses in such trials are often performed assuming events are missing at random, and sensitivity analyses are necessary to assess robustness of primary analysis conclusions to missing data assumptions. Control-based imputation is an attractive approach in superiority trials for imposing conservative assumptions on how data may be missing not at random. A popular approach to implementing control-based assumptions for recurrent events is multiple imputation (MI), but Rubin's variance estimator is often biased for the true sampling variability of the point estimator in the control-based setting. We propose distributional imputation (DI) with corresponding wild bootstrap variance estimation procedure for control-based sensitivity analyses of recurrent events. We apply control-based DI to a type I diabetes trial. In the application and simulation studies, DI produced more reasonable standard error estimates than MI with Rubin's combining rules in control-based sensitivity analyses of recurrent events.
对于关注复发事件终点的纵向临床试验,通常会出现缺失事件数据的情况。此类试验中的主要分析通常假设事件是随机缺失的,并且需要进行敏感性分析来评估主要分析结论对缺失数据假设的稳健性。基于控制的插补是一种有吸引力的方法,用于对非随机缺失数据施加保守假设。对于实施基于控制的假设的复发事件,一种流行的方法是多次插补 (MI),但 Rubin 的方差估计在基于控制的设置中对于点估计的真实抽样变异性通常存在偏差。我们提出了基于分布的插补 (DI) 及其对应的控制敏感性分析的野生 bootstrap 方差估计程序,用于复发事件。我们将基于控制的 DI 应用于 I 型糖尿病试验。在应用和模拟研究中,DI 在基于控制的复发事件敏感性分析中产生了比 MI 和 Rubin 合并规则更合理的标准误估计。