Department of Otorhinolaryngology, The First People's Hospital of Foshan, Foshan, China.
Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
J Cell Mol Med. 2024 May;28(9):e18355. doi: 10.1111/jcmm.18355.
Deep learning techniques have been applied to medical image segmentation and demonstrated expert-level performance. Due to the poor generalization abilities of the models in the deployment in different centres, common solutions, such as transfer learning and domain adaptation techniques, have been proposed to mitigate this issue. However, these solutions necessitate retraining the models with target domain data and annotations, which limits their deployment in clinical settings in unseen domains. We evaluated the performance of domain generalization methods on the task of MRI segmentation of nasopharyngeal carcinoma (NPC) by collecting a new dataset of 321 patients with manually annotated MRIs from two hospitals. We transformed the modalities of MRI, including T1WI, T2WI and CE-T1WI, from the spatial domain to the frequency domain using Fourier transform. To address the bottleneck of domain generalization in MRI segmentation of NPC, we propose a meta-learning approach based on frequency domain feature mixing. We evaluated the performance of MFNet against existing techniques for generalizing NPC segmentation in terms of Dice and MIoU. Our method evidently outperforms the baseline in handling the generalization of NPC segmentation. The MF-Net clearly demonstrates its effectiveness for generalizing NPC MRI segmentation to unseen domains (Dice = 67.59%, MIoU = 75.74% T1W1). MFNet enhances the model's generalization capabilities by incorporating mixed-feature meta-learning. Our approach offers a novel perspective to tackle the domain generalization problem in the field of medical imaging by effectively exploiting the unique characteristics of medical images.
深度学习技术已被应用于医学图像分割,并展现出了专家级的性能。由于模型在不同中心部署时的泛化能力较差,因此提出了常见的解决方案,如迁移学习和域自适应技术,以缓解这个问题。然而,这些解决方案需要使用目标域数据和标注来重新训练模型,这限制了它们在未见过的领域的临床环境中的部署。我们通过收集来自两家医院的 321 名患者的手动标注 MRI 数据,评估了域泛化方法在鼻咽癌(NPC)MRI 分割任务上的性能。我们使用傅里叶变换将 MRI 的模态(包括 T1WI、T2WI 和 CE-T1WI)从空间域转换到频率域。为了解决 NPC 的 MRI 分割中的域泛化瓶颈问题,我们提出了一种基于频率域特征混合的元学习方法。我们根据 Dice 和 MIoU 评估了 MFNet 与现有技术在 NPC 分割泛化方面的性能。我们的方法在处理 NPC 分割的泛化方面明显优于基线。MF-Net 清楚地证明了它在将 NPC MRI 分割推广到未见领域(Dice=67.59%,MIoU=75.74% T1W1)方面的有效性。MFNet 通过结合混合特征元学习来增强模型的泛化能力。我们的方法为解决医学图像领域的域泛化问题提供了一个新的视角,通过有效地利用医学图像的独特特征来解决这个问题。