Luo Xiangde, Wang Hongqiu, Xu Jinfeng, Li Lu, Zhao Yue, He Yuan, Huang Hui, Xiao Jianghong, Song Tao, Zhang Shichuan, Zhang Shaoting, Wang Guotai, Liao Wenjun
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
Department of Systems Hub, Hong Kong University of Science and Technology, Guangzhou, China.
Int J Radiat Oncol Biol Phys. 2025 Apr 1;121(5):1384-1393. doi: 10.1016/j.ijrobp.2024.11.064. Epub 2024 Nov 16.
To develop a deep learning method exploiting active learning and source-free domain adaptation for gross tumor volume delineation in nasopharyngeal carcinoma (NPC), addressing the variability and inaccuracy when deploying segmentation models in multicenter and multirater settings.
One thousand fifty-seven magnetic resonance imaging scans of patients with NPC from 5 hospitals were retrospectively collected and annotated by experts from the same medical group with consensus for multicenter adaptation evaluation. One data set was used for model development (source domain), with the remaining 4 for adaptation testing (target domains). Meanwhile, another set of 170 patients with NPC, with annotations delineated by 4 independent experts, was created for multirater adaptation evaluation. We evaluated the pretrained model's migration ability to the 4 multicenter and 4 multirater target domains. Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and other metrics were used for quantitative evaluations.
In the adaptation of dataset5 to other data sets, our source-free active learning adaptation method only requires limited labeled target samples (only 20%) to achieve a median DSC ranging from 0.70 to 0.86 and a median HD95 ranging from 3.16 to 7.21 mm for 4 target centers, and 0.78 to 0.85 and 3.64 to 6.00 mm for 4 multirater data sets. For DSC, our results for 3 of 4 multicenter data sets and all multirater data sets showed no statistical difference compared to the fully supervised U-Net model (P values > 0.05) and significantly surpassed comparison models for 3 multicenter data sets and all multirater data sets (P values < 0.05). Clinical assessment showed that our method-generated delineations can be used both in multicenter and multirater scenarios after minor refinement (revision ratio <10% and median time <2 minutes).
The proposed method effectively minimizes domain gaps and delivers encouraging performance compared with fully supervised learning models with limited labeled training samples, offering a promising and practical solution for accurate and generalizable gross tumor volume segmentation in NPC.
开发一种利用主动学习和无源域适应的深度学习方法,用于鼻咽癌(NPC)的大体肿瘤体积勾画,解决在多中心和多评估者环境中部署分割模型时的变异性和不准确性问题。
回顾性收集了来自5家医院的1057例NPC患者的磁共振成像扫描数据,并由同一医疗团队的专家进行注释,以达成多中心适应性评估的共识。一个数据集用于模型开发(源域),其余4个用于适应性测试(目标域)。同时,创建了另一组170例NPC患者的数据,由4名独立专家进行注释,用于多评估者适应性评估。我们评估了预训练模型向4个多中心和4个多评估者目标域的迁移能力。使用骰子相似系数(DSC)、95%豪斯多夫距离(HD95)和其他指标进行定量评估。
在将数据集5适应其他数据集时,我们的无源主动学习适应方法仅需要有限的标记目标样本(仅20%),就能在4个目标中心实现中位数DSC为0.70至0.86,中位数HD95为3.16至7.21毫米;在4个多评估者数据集中实现中位数DSC为0.78至0.85,中位数HD95为3.64至6.00毫米。对于DSC,我们在4个多中心数据集中的3个以及所有多评估者数据集中的结果与完全监督的U-Net模型相比,无统计学差异(P值>0.05),并且在3个多中心数据集和所有多评估者数据集中显著超过比较模型(P值<0.05)。临床评估表明,我们的方法生成的勾画在经过轻微细化后(修订率<10%,中位数时间<2分钟)可用于多中心和多评估者场景。
与具有有限标记训练样本的完全监督学习模型相比,所提出的方法有效地最小化了域差距并提供了令人鼓舞的性能,为NPC中准确且可推广的大体肿瘤体积分割提供了一个有前景且实用的解决方案。