Cheng Zhiming, Liu Mingxia, Yan Chenggang, Wang Shuai
School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
Neural Netw. 2025 Apr;184:107073. doi: 10.1016/j.neunet.2024.107073. Epub 2024 Dec 26.
Domain Generalization-based Medical Image Segmentation (DGMIS) aims to enhance the robustness of segmentation models on unseen target domains by learning from fully annotated data across multiple source domains. Despite the progress made by traditional DGMIS methods, they still face several challenges. First, most DGMIS approaches rely on static models to perform inference on unseen target domains, lacking the ability to dynamically adapt to samples from different target domains. Second, current DGMIS methods often use Fourier transforms to simulate target domain styles from a global perspective, but relying solely on global transformations for data augmentation fails to fully capture the complexity and local details of the target domains. To address these issues, we propose a Dynamic Domain Generalization (DDG) method for medical image segmentation, which improves the generalization capability of models on unseen target domains by dynamically adjusting model parameters and effectively simulating target domain styles. Specifically, we design a Dynamic Position Transfer (DPT) module that decouples model parameters into static and dynamic components while incorporating positional encoding information to enable efficient feature representation and dynamic adaptation to target domain characteristics. Additionally, we introduce a Global-Local Fourier Random Transformation (GLFRT) module, which jointly considers both global and local style information of the samples. By using a random style selection strategy, this module enhances sample diversity while controlling training costs. Experimental results demonstrate that our method outperforms state-of-the-art approaches on several public medical image datasets, achieving average Dice score improvements of 0.58%, 0.76%, and 0.76% on the Fundus dataset (1060 retinal images), Prostate dataset (1744 T2-weighted MRI scans), and SCGM dataset (551 MRI image slices), respectively. The code is available online (https://github.com/ZMC-IIIM/DDG-Med).
基于域泛化的医学图像分割(DGMIS)旨在通过从多个源域的完全标注数据中学习,提高分割模型在未见目标域上的鲁棒性。尽管传统的DGMIS方法取得了进展,但它们仍然面临一些挑战。首先,大多数DGMIS方法依赖静态模型对未见目标域进行推理,缺乏动态适应来自不同目标域样本的能力。其次,当前的DGMIS方法通常使用傅里叶变换从全局角度模拟目标域样式,但仅依靠全局变换进行数据增强无法充分捕捉目标域的复杂性和局部细节。为了解决这些问题,我们提出了一种用于医学图像分割的动态域泛化(DDG)方法,该方法通过动态调整模型参数和有效模拟目标域样式来提高模型在未见目标域上的泛化能力。具体来说,我们设计了一个动态位置转移(DPT)模块,该模块将模型参数解耦为静态和动态组件,同时纳入位置编码信息,以实现高效的特征表示和对目标域特征的动态适应。此外,我们引入了一个全局-局部傅里叶随机变换(GLFRT)模块,该模块联合考虑样本的全局和局部样式信息。通过使用随机样式选择策略,该模块在控制训练成本的同时增强了样本多样性。实验结果表明,我们的方法在几个公共医学图像数据集上优于现有方法,在眼底数据集(1060张视网膜图像)、前列腺数据集(1744张T2加权MRI扫描)和SCGM数据集(551张MRI图像切片)上分别实现了0.58%、0.76%和0.76%的平均Dice分数提升。代码可在线获取(https://github.com/ZMC-IIIM/DDG-Med)。