Xu Hong, Morris Alan, Elhabian Shireen Y
Scientific Computing and Imaging Institute, School of Computing, University of Utah, Salt Lake City, UT, USA.
Shape Med Imaging (2023). 2023 Oct;14350:47-54. doi: 10.1007/978-3-031-46914-5_4. Epub 2023 Oct 31.
Statistical Shape Modeling (SSM) is a quantitative method for analyzing morphological variations in anatomical structures. These analyses often necessitate building models on targeted anatomical regions of interest to focus on specific morphological features. We propose an extension to particle-based shape modeling (PSM), a widely used SSM framework, to allow shape modeling to arbitrary regions of interest. Existing methods to define regions of interest are computationally expensive and have topological limitations. To address these shortcomings, we use mesh fields to define free-form constraints, which allow for delimiting arbitrary regions of interest on shape surfaces. Furthermore, we add a quadratic penalty method to the model optimization to enable computationally efficient enforcement of any combination of cutting-plane and free-form constraints. We demonstrate the effectiveness of this method on a challenging synthetic dataset and two medical datasets.
统计形状建模(SSM)是一种用于分析解剖结构形态变化的定量方法。这些分析通常需要在目标感兴趣的解剖区域上构建模型,以专注于特定的形态特征。我们提出了对基于粒子的形状建模(PSM)的扩展,PSM是一种广泛使用的SSM框架,以允许对任意感兴趣区域进行形状建模。现有的定义感兴趣区域的方法计算成本高昂且具有拓扑限制。为了解决这些缺点,我们使用网格场来定义自由形式约束,这允许在形状表面上划定任意感兴趣区域。此外,我们在模型优化中添加了二次惩罚方法,以实现对切割平面和自由形式约束的任何组合进行高效计算的强制执行。我们在具有挑战性的合成数据集和两个医学数据集上证明了该方法的有效性。