文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于多器官解剖结构可扩展建模的统计多级形状模型。

Statistical multi-level shape models for scalable modeling of multi-organ anatomies.

作者信息

Khan Nawazish, Peterson Andrew C, Aubert Benjamin, Morris Alan, Atkins Penny R, Lenz Amy L, Anderson Andrew E, Elhabian Shireen Y

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States.

School of Computing, University of Utah, Salt Lake City, UT, United States.

出版信息

Front Bioeng Biotechnol. 2023 Feb 16;11:1089113. doi: 10.3389/fbioe.2023.1089113. eCollection 2023.


DOI:10.3389/fbioe.2023.1089113
PMID:36873362
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9978224/
Abstract

Statistical shape modeling is an indispensable tool in the quantitative analysis of anatomies. Particle-based shape modeling (PSM) is a state-of-the-art approach that enables the learning of population-level shape representation from medical imaging data (e.g., CT, MRI) and the associated 3D models of anatomy generated from them. PSM optimizes the placement of a dense set of landmarks (i.e., correspondence points) on a given shape cohort. PSM supports multi-organ modeling as a particular case of the conventional single-organ framework a global statistical model, where multi-structure anatomy is considered as a single structure. However, global multi-organ models are not scalable for many organs, induce anatomical inconsistencies, and result in entangled shape statistics where modes of shape variation reflect both within- and between-organ variations. Hence, there is a need for an efficient modeling approach that can capture the inter-organ relations (i.e., pose variations) of the complex anatomy while simultaneously optimizing the morphological changes of each organ and capturing the population-level statistics. This paper leverages the PSM approach and proposes a new approach for correspondence-point optimization of multiple organs that overcomes these limitations. The central idea of multilevel component analysis, is that the shape statistics consists of two mutually orthogonal subspaces: the within-organ subspace and the between-organ subspace. We formulate the correspondence optimization objective using this generative model. We evaluate the proposed method using synthetic shape data and clinical data for articulated joint structures of the spine, foot and ankle, and hip joint.

摘要

统计形状建模是解剖结构定量分析中不可或缺的工具。基于粒子的形状建模(PSM)是一种先进的方法,能够从医学成像数据(如CT、MRI)以及从中生成的相关解剖结构3D模型中学习群体水平的形状表示。PSM可优化给定形状群组上密集地标点(即对应点)的放置。PSM支持多器官建模,作为传统单器官框架——全局统计模型的一种特殊情况,其中多结构解剖被视为单一结构。然而,全局多器官模型对于许多器官来说不可扩展,会引发解剖学上的不一致,并导致形状统计相互纠缠,其中形状变化模式既反映器官内部的变化,也反映器官之间的变化。因此,需要一种有效的建模方法,既能捕捉复杂解剖结构的器官间关系(即姿态变化),同时又能优化每个器官的形态变化并捕捉群体水平的统计信息。本文利用PSM方法,提出了一种用于多器官对应点优化的新方法,该方法克服了这些局限性。多级成分分析的核心思想是,形状统计由两个相互正交的子空间组成:器官内子空间和器官间子空间。我们使用这种生成模型来制定对应优化目标。我们使用合成形状数据以及脊柱、足踝和髋关节的关节结构的临床数据对所提出的方法进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/d31b49f64260/fbioe-11-1089113-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/8e0a664844b3/fbioe-11-1089113-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/ee4adff10f30/fbioe-11-1089113-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/984d76749972/fbioe-11-1089113-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/85d87791d4ea/fbioe-11-1089113-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/f290308e0e9a/fbioe-11-1089113-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/895dbc5896a3/fbioe-11-1089113-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/3e6c6b110fe5/fbioe-11-1089113-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/dc2a8552922f/fbioe-11-1089113-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/f18c4531b648/fbioe-11-1089113-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/5fa0adb5a531/fbioe-11-1089113-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/c9d4dcf97987/fbioe-11-1089113-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/10d70bc27482/fbioe-11-1089113-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/e025d949cb81/fbioe-11-1089113-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/d31b49f64260/fbioe-11-1089113-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/8e0a664844b3/fbioe-11-1089113-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/ee4adff10f30/fbioe-11-1089113-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/984d76749972/fbioe-11-1089113-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/85d87791d4ea/fbioe-11-1089113-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/f290308e0e9a/fbioe-11-1089113-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/895dbc5896a3/fbioe-11-1089113-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/3e6c6b110fe5/fbioe-11-1089113-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/dc2a8552922f/fbioe-11-1089113-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/f18c4531b648/fbioe-11-1089113-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/5fa0adb5a531/fbioe-11-1089113-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/c9d4dcf97987/fbioe-11-1089113-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/10d70bc27482/fbioe-11-1089113-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/e025d949cb81/fbioe-11-1089113-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/239d/9978224/d31b49f64260/fbioe-11-1089113-g014.jpg

相似文献

[1]
Statistical multi-level shape models for scalable modeling of multi-organ anatomies.

Front Bioeng Biotechnol. 2023-2-16

[2]
Statistical shape modeling of multi-organ anatomies with shared boundaries.

Front Bioeng Biotechnol. 2023-1-12

[3]
Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries.

Stat Atlases Comput Models Heart. 2022-9

[4]
Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach.

Stat Atlases Comput Models Heart. 2022-9

[5]
OPTIMIZATION-DRIVEN STATISTICAL MODELS OF ANATOMIES USING RADIAL BASIS FUNCTION SHAPE REPRESENTATION.

Proc IEEE Int Symp Biomed Imaging. 2024-5

[6]
Computational anatomy for multi-organ analysis in medical imaging: A review.

Med Image Anal. 2019-5-15

[7]
Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy.

Med Image Comput Comput Assist Interv. 2023-10

[8]
Learning spatiotemporal statistical shape models for non-linear dynamic anatomies.

Front Bioeng Biotechnol. 2023-1-27

[9]
Statistical Shape Models: Understanding and Mastering Variation in Anatomy.

Adv Exp Med Biol. 2019

[10]
Regularized multi-structural shape modeling of the knee complex based on deep functional maps.

Comput Med Imaging Graph. 2021-4

引用本文的文献

[1]
Assessing differences in growth and shape between symptomatic and asymptomatic abdominal aortic aneurysms.

Quant Imaging Med Surg. 2025-7-1

[2]
Sacroiliac joint auricular surface morphology modulates its mechanical environment.

J Anat. 2025-2

[3]
Three-dimensional characterization of sex differences in abdominal aortic aneurysm progression via vascular deformation mapping.

Sci Rep. 2024-10-16

[4]
Machine Learning and Statistical Shape Modelling Methodologies to Assess Vascular Morphology before and after Aortic Valve Replacement.

J Clin Med. 2024-8-5

[5]
Morphology of the scaphotrapeziotrapezoid joint: A multi-domain statistical shape modeling approach.

J Orthop Res. 2024-11

本文引用的文献

[1]
Benchmarking off-the-shelf statistical shape modeling tools in clinical applications.

Med Image Anal. 2022-2

[2]
Prediction of femoral head coverage from articulated statistical shape models of patients with developmental dysplasia of the hip.

J Orthop Res. 2022-9

[3]
VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images.

Med Image Anal. 2021-10

[4]
Leveraging unsupervised image registration for discovery of landmark shape descriptor.

Med Image Anal. 2021-10

[5]
Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach.

Sci Rep. 2021-4-1

[6]
Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Joints.

Shape Med Imaging (2020). 2020-10

[7]
Morphologic analysis of the subtalar joint using statistical shape modeling.

J Orthop Res. 2020-12

[8]
Thinking outside the glenohumeral box: Hierarchical shape variation of the periarticular anatomy of the scapula using statistical shape modeling.

J Orthop Res. 2020-1-24

[9]
Medial axis segmentation of cranial nerves using shape statistics-aware discrete deformable models.

Int J Comput Assist Radiol Surg. 2019-6-24

[10]
Computational anatomy for multi-organ analysis in medical imaging: A review.

Med Image Anal. 2019-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索