Khan Nawazish, Peterson Andrew C, Aubert Benjamin, Morris Alan, Atkins Penny R, Lenz Amy L, Anderson Andrew E, Elhabian Shireen Y
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States.
School of Computing, University of Utah, Salt Lake City, UT, United States.
Front Bioeng Biotechnol. 2023 Feb 16;11:1089113. doi: 10.3389/fbioe.2023.1089113. eCollection 2023.
Statistical shape modeling is an indispensable tool in the quantitative analysis of anatomies. Particle-based shape modeling (PSM) is a state-of-the-art approach that enables the learning of population-level shape representation from medical imaging data (e.g., CT, MRI) and the associated 3D models of anatomy generated from them. PSM optimizes the placement of a dense set of landmarks (i.e., correspondence points) on a given shape cohort. PSM supports multi-organ modeling as a particular case of the conventional single-organ framework a global statistical model, where multi-structure anatomy is considered as a single structure. However, global multi-organ models are not scalable for many organs, induce anatomical inconsistencies, and result in entangled shape statistics where modes of shape variation reflect both within- and between-organ variations. Hence, there is a need for an efficient modeling approach that can capture the inter-organ relations (i.e., pose variations) of the complex anatomy while simultaneously optimizing the morphological changes of each organ and capturing the population-level statistics. This paper leverages the PSM approach and proposes a new approach for correspondence-point optimization of multiple organs that overcomes these limitations. The central idea of multilevel component analysis, is that the shape statistics consists of two mutually orthogonal subspaces: the within-organ subspace and the between-organ subspace. We formulate the correspondence optimization objective using this generative model. We evaluate the proposed method using synthetic shape data and clinical data for articulated joint structures of the spine, foot and ankle, and hip joint.
统计形状建模是解剖结构定量分析中不可或缺的工具。基于粒子的形状建模(PSM)是一种先进的方法,能够从医学成像数据(如CT、MRI)以及从中生成的相关解剖结构3D模型中学习群体水平的形状表示。PSM可优化给定形状群组上密集地标点(即对应点)的放置。PSM支持多器官建模,作为传统单器官框架——全局统计模型的一种特殊情况,其中多结构解剖被视为单一结构。然而,全局多器官模型对于许多器官来说不可扩展,会引发解剖学上的不一致,并导致形状统计相互纠缠,其中形状变化模式既反映器官内部的变化,也反映器官之间的变化。因此,需要一种有效的建模方法,既能捕捉复杂解剖结构的器官间关系(即姿态变化),同时又能优化每个器官的形态变化并捕捉群体水平的统计信息。本文利用PSM方法,提出了一种用于多器官对应点优化的新方法,该方法克服了这些局限性。多级成分分析的核心思想是,形状统计由两个相互正交的子空间组成:器官内子空间和器官间子空间。我们使用这种生成模型来制定对应优化目标。我们使用合成形状数据以及脊柱、足踝和髋关节的关节结构的临床数据对所提出的方法进行了评估。
Front Bioeng Biotechnol. 2023-2-16
Front Bioeng Biotechnol. 2023-1-12
Stat Atlases Comput Models Heart. 2022-9
Stat Atlases Comput Models Heart. 2022-9
Proc IEEE Int Symp Biomed Imaging. 2024-5
Med Image Anal. 2019-5-15
Med Image Comput Comput Assist Interv. 2023-10
Front Bioeng Biotechnol. 2023-1-27
Adv Exp Med Biol. 2019
Comput Med Imaging Graph. 2021-4
Quant Imaging Med Surg. 2025-7-1
Med Image Anal. 2022-2
Med Image Anal. 2021-10
Med Image Anal. 2021-10
Shape Med Imaging (2020). 2020-10
J Orthop Res. 2020-12
Int J Comput Assist Radiol Surg. 2019-6-24
Med Image Anal. 2019-5-15