Iyer Krithika, Adams Jadie, Elhabian Shireen Y
Scientific Computing and Imaging Institute, University of Utah, UT, USA.
Kahlert School of Computing, University of Utah, UT, USA.
Med Image Underst Anal. 2024 Jul;14859:142-157. doi: 10.1007/978-3-031-66955-2_10. Epub 2024 Jul 24.
Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.
统计形状建模(SSM)是一个强大的计算框架,用于量化和分析解剖结构的几何变异性,促进医学研究、诊断和治疗规划的进展。从成像数据进行形状建模的传统方法需要大量的人工和计算资源。此外,这些方法需要重复整个建模流程,以便为新数据导出形状描述符(例如,基于表面的点对应关系)。虽然深度学习方法在简化新数据上的SSM构建方面显示出了前景,但它们仍然依赖传统技术来监督深度网络的训练。此外,传统方法的主要线性假设限制了它们的有效性,这也是使用优化/既定对应关系训练的深度学习模型所继承的局限性。因此,表示复杂的解剖结构变得具有挑战性。为了解决这些局限性,我们引入了SCorP,这是一个能够直接从未分割图像预测基于表面的对应关系的新颖框架。通过以无监督方式直接从表面网格学习形状先验,所提出的模型消除了用于训练监督的优化形状模型的需求。强大的形状先验充当教师,并对学生网络的特征学习进行正则化,以指导其学习预测表面对应关系的基于图像的特征。所提出的模型通过消除对应预测任务的监督,同时减轻线性假设,简化了训练和推理阶段。在LGE MRI左心房数据集和腹部CT-1K肝脏数据集上的实验表明,所提出的技术提高了图像驱动的SSM的准确性和鲁棒性,为当前的完全监督方法提供了一个有吸引力的替代方案。