用于超声心动图左心室射血分数的自动化神经网络预测的开发。

Development of automated neural network prediction for echocardiographic left ventricular ejection fraction.

作者信息

Zhang Yuting, Liu Boyang, Bunting Karina V, Brind David, Thorley Alexander, Karwath Andreas, Lu Wenqi, Zhou Diwei, Wang Xiaoxia, Mobley Alastair R, Tica Otilia, Gkoutos Georgios V, Kotecha Dipak, Duan Jinming

机构信息

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, United Kingdom.

Manchester University NHS Foundation Trust, Manchester, United Kingdom.

出版信息

Front Med (Lausanne). 2024 Apr 3;11:1354070. doi: 10.3389/fmed.2024.1354070. eCollection 2024.

Abstract

INTRODUCTION

The echocardiographic measurement of left ventricular ejection fraction (LVEF) is fundamental to the diagnosis and classification of patients with heart failure (HF).

METHODS

This paper aimed to quantify LVEF automatically and accurately with the proposed pipeline method based on deep neural networks and ensemble learning. Within the pipeline, an Atrous Convolutional Neural Network (ACNN) was first trained to segment the left ventricle (LV), before employing the area-length formulation based on the ellipsoid single-plane model to calculate LVEF values. This formulation required inputs of LV area, derived from segmentation using an improved Jeffrey's method, as well as LV length, derived from a novel ensemble learning model. To further improve the pipeline's accuracy, an automated peak detection algorithm was used to identify end-diastolic and end-systolic frames, avoiding issues with human error. Subsequently, single-beat LVEF values were averaged across all cardiac cycles to obtain the final LVEF.

RESULTS

This method was developed and internally validated in an open-source dataset containing 10,030 echocardiograms. The Pearson's correlation coefficient was 0.83 for LVEF prediction compared to expert human analysis ( < 0.001), with a subsequent area under the receiver operator curve (AUROC) of 0.98 (95% confidence interval 0.97 to 0.99) for categorisation of HF with reduced ejection (HFrEF; LVEF<40%). In an external dataset with 200 echocardiograms, this method achieved an AUC of 0.90 (95% confidence interval 0.88 to 0.91) for HFrEF assessment.

CONCLUSION

The automated neural network-based calculation of LVEF is comparable to expert clinicians performing time-consuming, frame-by-frame manual evaluations of cardiac systolic function.

摘要

引言

左心室射血分数(LVEF)的超声心动图测量是心力衰竭(HF)患者诊断和分类的基础。

方法

本文旨在基于深度神经网络和集成学习的提出的流水线方法自动且准确地量化LVEF。在该流水线中,首先训练空洞卷积神经网络(ACNN)来分割左心室(LV),然后采用基于椭球单平面模型的面积长度公式来计算LVEF值。该公式需要使用改进的杰弗里方法从分割中得出的LV面积以及从新型集成学习模型中得出的LV长度作为输入。为了进一步提高流水线的准确性,使用自动峰值检测算法来识别舒张末期和收缩末期帧,避免人为误差问题。随后,将所有心动周期的单搏LVEF值进行平均以获得最终的LVEF。

结果

该方法在包含10,030份超声心动图的开源数据集中开发并进行了内部验证。与专家人工分析相比,LVEF预测的皮尔逊相关系数为0.83(<0.001),随后用于射血分数降低的心力衰竭(HFrEF;LVEF<40%)分类的受试者操作特征曲线下面积(AUROC)为0.98(95%置信区间0.97至0.99)。在一个包含200份超声心动图的外部数据集中,该方法对HFrEF评估的AUC为0.90(95%置信区间0.88至0.91)。

结论

基于神经网络的LVEF自动计算与进行耗时的逐帧心脏收缩功能手动评估的专家临床医生相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a60/11057494/5401d87424cd/fmed-11-1354070-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索