Suppr超能文献

SDDSynergy:学习用于可解释的抗癌药物协同作用预测的重要分子亚结构

SDDSynergy: Learning Important Molecular Substructures for Explainable Anticancer Drug Synergy Prediction.

作者信息

Liu Yunjiong, Zhang Peiliang, Che Chao, Wei Ziqi

机构信息

Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, Dalian University, Dalian 116622, China.

School of Software Engineering, Dalian University, Dalian 116622, China.

出版信息

J Chem Inf Model. 2024 Dec 23;64(24):9551-9562. doi: 10.1021/acs.jcim.4c00177. Epub 2024 Apr 30.

Abstract

Drug combination therapies are well-established strategies for the treatment of cancer with low toxicity and fewer adverse effects. Computational drug synergy prediction approaches can accelerate the discovery of novel combination therapies, but the existing methods do not explicitly consider the key role of important substructures in producing synergistic effects. To this end, we propose a significant substructure-aware anticancer drug synergy prediction method, named SDDSynergy, to adaptively identify critical functional groups in drug synergy. SDDSynergy splits the task of predicting drug synergy into predicting the effect of individual substructures on cancer cell lines and highlights the impact of important substructures through a novel drug-cell line attention mechanism. And a substructure pair attention mechanism is incorporated to capture the information on internal substructure pairs interaction in drug combinations, which aids in predicting synergy. The substructures of different sizes and shapes are directly obtained from the molecular graph of the drugs by multilayer substructure information passing networks. Extensive experiments on three real-world data sets demonstrate that SDDSynergy outperforms other state-of-the-art methods. We also verify that many of the novel drug combinations predicted by SDDSynergy are supported by previous studies or clinical trials through an in-depth literature survey.

摘要

药物联合疗法是治疗癌症的成熟策略,具有低毒性和较少的副作用。计算药物协同作用预测方法可以加速新型联合疗法的发现,但现有方法没有明确考虑重要子结构在产生协同效应中的关键作用。为此,我们提出了一种名为SDDSynergy的重要子结构感知抗癌药物协同作用预测方法,以自适应地识别药物协同作用中的关键官能团。SDDSynergy将预测药物协同作用的任务分解为预测单个子结构对癌细胞系的影响,并通过一种新颖的药物-细胞系注意力机制突出重要子结构的影响。并且引入了子结构对注意力机制来捕获药物组合中内部子结构对相互作用的信息,这有助于预测协同作用。不同大小和形状的子结构通过多层子结构信息传递网络直接从药物的分子图中获得。在三个真实世界数据集上进行的大量实验表明,SDDSynergy优于其他现有最先进的方法。我们还通过深入的文献调查验证了SDDSynergy预测的许多新型药物组合得到了先前研究或临床试验的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验