School of Computer Science, Shaanxi Normal University, Xi'an, China.
School of Mathematics and Statistics, Qinghai Normal University, Qinghai, China.
PLoS Comput Biol. 2023 Jan 26;19(1):e1010812. doi: 10.1371/journal.pcbi.1010812. eCollection 2023 Jan.
Expressive molecular representation plays critical roles in researching drug design, while effective methods are beneficial to learning molecular representations and solving related problems in drug discovery, especially for drug-drug interactions (DDIs) prediction. Recently, a lot of work has been put forward using graph neural networks (GNNs) to forecast DDIs and learn molecular representations. However, under the current GNNs structure, the majority of approaches learn drug molecular representation from one-dimensional string or two-dimensional molecular graph structure, while the interaction information between chemical substructure remains rarely explored, and it is neglected to identify key substructures that contribute significantly to the DDIs prediction. Therefore, we proposed a dual graph neural network named DGNN-DDI to learn drug molecular features by using molecular structure and interactions. Specifically, we first designed a directed message passing neural network with substructure attention mechanism (SA-DMPNN) to adaptively extract substructures. Second, in order to improve the final features, we separated the drug-drug interactions into pairwise interactions between each drug's unique substructures. Then, the features are adopted to predict interaction probability of a DDI tuple. We evaluated DGNN-DDI on real-world dataset. Compared to state-of-the-art methods, the model improved DDIs prediction performance. We also conducted case study on existing drugs aiming to predict drug combinations that may be effective for the novel coronavirus disease 2019 (COVID-19). Moreover, the visual interpretation results proved that the DGNN-DDI was sensitive to the structure information of drugs and able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method enhanced the performance and interpretation capability of DDI prediction modeling.
表达分子表示在药物设计研究中起着关键作用,而有效的方法有利于学习分子表示并解决药物发现中的相关问题,特别是在药物-药物相互作用(DDI)预测方面。最近,许多使用图神经网络(GNN)来预测 DDI 和学习分子表示的工作已经提出。然而,在当前的 GNN 结构下,大多数方法从一维字符串或二维分子图结构学习药物分子表示,而化学子结构之间的相互作用信息很少被探索,并且忽略了识别对 DDI 预测有重大贡献的关键子结构。因此,我们提出了一种名为 DGNN-DDI 的双图神经网络,通过使用分子结构和相互作用来学习药物分子特征。具体来说,我们首先设计了一种带有子结构注意力机制(SA-DMPNN)的定向消息传递神经网络,以自适应地提取子结构。其次,为了提高最终特征,我们将药物-药物相互作用分为每个药物独特子结构之间的成对相互作用。然后,采用这些特征来预测 DDI 对的相互作用概率。我们在真实数据集上评估了 DGNN-DDI。与最先进的方法相比,该模型提高了 DDI 的预测性能。我们还针对现有药物进行了案例研究,旨在预测可能对 2019 年新型冠状病毒病(COVID-19)有效的药物组合。此外,可视化解释结果证明,DGNN-DDI 对药物的结构信息敏感,并且能够检测到 DDI 的关键子结构。这些优势表明,所提出的方法增强了 DDI 预测建模的性能和解释能力。