Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France.
Synchrotron SOLEIL (CNRS - CEA), Saint-Aubin, France.
Biosci Rep. 2024 May 29;44(5). doi: 10.1042/BSR20240102.
The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.
来自醋酸钙不动杆菌的可溶性葡萄糖脱氢酶(sGDH)已被广泛研究,并在生物传感器中用于检测葡萄糖的存在,利用其高周转率和对分子氧的不敏感性。然而,这种方法有两个缺点:酶具有广泛的底物特异性(导致血糖测量不准确),并且随着时间的推移不稳定(不如其他氧化葡萄糖酶)。我们报告了两种 sGDH 突变体的特征:单个突变体 Y343F 和双突变体 D143E/Y343F。与野生型相比,突变体的酶选择性和特异性分别提高了 1.2 倍(Y343F)和 5.7 倍(D143E/Y343F)。旨在表征这些突变体的晶体学实验令人惊讶地表明,对于酶活性至关重要的辅基 PQQ(吡咯喹啉醌)对于野生型和突变型结构均处于裂解形式。我们提供的证据表明,sGDH 产生 H2O2,其产生水平取决于突变。此外,光谱实验使我们能够跟踪辅基的自降解和 sGDH 葡萄糖氧化活性的丧失。这些研究表明,该酶对其自身产生的 H2O2 敏感。我们表明,通过添加过氧化氢酶来消耗产生的 H2O2,可以减缓 sGDH 的过早老化,从而随着时间的推移设计出更稳定的生物传感器。我们的研究提出了关于 H2O2 产生的机制以及 sGDH 这种活性的生理作用的问题。