Stolarczyk Krzysztof, Rogalski Jerzy, Bilewicz Renata
Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland.
Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka Str. 19, 20-031 Lublin, Poland.
Bioelectrochemistry. 2020 Oct;135:107574. doi: 10.1016/j.bioelechem.2020.107574. Epub 2020 May 23.
This review discusses the physical and chemical properties of nicotinamide redox cofactor dependent glucose dehydrogenase (NAD(P) dependent GDH) and its extensive application in biosensors and bio-fuel cells. GDHs from different organisms show diverse biochemical properties (e.g., activity and stability) and preferences towards cofactors, such as nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). The (NAD(P)) play important roles in biological electron transfer, however, there are some difficulties related to their application in devices that originate from their chemical properties and labile binding to the GDH enzyme. This review discusses the electrode modifications aimed at immobilising NAD or NADP cofactors and GDH at electrodes. Binding of the enzyme was achieved by appropriate protein engineering techniques, including polymerisation, hydrophobisation or hydrophilisation processes. Various enzyme-modified electrodes applied in biosensors, enzymatic fuel cells, and biobatteries are compared. Importantly, GDH can operate alone or as part of an enzymatic cascade, which often improves the functional parameters of the biofuel cell or simply allows use of cheaper fuels. Overall, this review explores how NAD(P)-dependent GDH has recently demonstrated high potential for use in various systems to generate electricity from biological sources for applications in implantable biomedical devices, wireless sensors, and portable electronic devices.
本综述讨论了烟酰胺氧化还原辅因子依赖性葡萄糖脱氢酶(NAD(P)依赖性GDH)的物理和化学性质及其在生物传感器和生物燃料电池中的广泛应用。来自不同生物体的GDH表现出多样的生化特性(如活性和稳定性)以及对辅酶因子的偏好,如烟酰胺腺嘌呤二核苷酸(NAD)和烟酰胺腺嘌呤二核苷酸磷酸(NADP)。NAD(P)在生物电子传递中发挥着重要作用,然而,由于其化学性质以及与GDH酶的不稳定结合,它们在器件中的应用存在一些困难。本综述讨论了旨在将NAD或NADP辅酶因子以及GDH固定在电极上的电极修饰方法。通过适当的蛋白质工程技术实现了酶的结合,包括聚合、疏水化或亲水化过程。比较了应用于生物传感器、酶燃料电池和生物电池的各种酶修饰电极。重要的是,GDH可以单独运行或作为酶级联反应的一部分,这通常会改善生物燃料电池的功能参数,或者仅仅允许使用更便宜的燃料。总体而言,本综述探讨了NAD(P)依赖性GDH最近如何在各种系统中展现出从生物源发电的高潜力,可应用于植入式生物医学设备、无线传感器和便携式电子设备。