Suppr超能文献

基于金属化电纺纳米纤维的先进可拉伸电子器件图案化技术

Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics.

作者信息

Bian Yuhan, Shi Haozhou, Yuan Qunchen, Zhu Yuxuan, Lin Zhengzi, Zhuang Liujing, Han Xun, Wang Ping, Chen Mengxiao, Wang Xiandi

机构信息

Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Jul;11(26):e2309735. doi: 10.1002/advs.202309735. Epub 2024 Apr 30.

Abstract

Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.

摘要

可拉伸电子器件取得了显著进展,尤其是在传感器和无线通信系统方面,这归因于它们能够与粗糙或不平坦表面实现贴合接触。然而,复杂、多功能且高精度的可拉伸电子器件的发展面临重大挑战,包括刚性 - 柔性界面处的不稳定性以及与传统高精度图案化技术的不兼容性。金属化电纺纳米纤维作为一种有前景的导电填料出现,具有出色的拉伸性、导电性、透明度以及与现有图案化技术的兼容性。在此,本综述聚焦于基于金属化纳米纤维的导电可拉伸复合材料的基本特性、制备工艺、图案化技术及应用场景。首先,介绍了金属化电纺纳米纤维的制造工艺及其相对于其他材料的优势。接着强调了图案化技术的最新进展,包括收集器收集、掩膜气相沉积和光刻,突出它们在提高精度和集成度方面的作用。此外,通过在传感器、无线系统、半导体器件和智能医疗解决方案中的应用,综述展示了金属化电纺纳米纤维在各个领域的广泛适用性和潜在影响。最终,本综述旨在激发进一步的创新并应对可拉伸电子器件中普遍存在的挑战,为这一充满活力的领域的未来突破铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e1/11234419/47064d4dde61/ADVS-11-2309735-g016.jpg

相似文献

1
Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics.
Adv Sci (Weinh). 2024 Jul;11(26):e2309735. doi: 10.1002/advs.202309735. Epub 2024 Apr 30.
4
Material-Based Approaches for the Fabrication of Stretchable Electronics.
Adv Mater. 2020 Apr;32(15):e1902743. doi: 10.1002/adma.201902743. Epub 2019 Aug 13.
5
Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters.
Polymers (Basel). 2016 Apr 5;8(4):123. doi: 10.3390/polym8040123.
6
Robust and Multifunctional Kirigami Electronics with a Tough and Permeable Aramid Nanofiber Framework.
Adv Mater. 2022 Dec;34(50):e2207350. doi: 10.1002/adma.202207350. Epub 2022 Nov 10.
7
Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
Acc Chem Res. 2019 Jan 15;52(1):91-99. doi: 10.1021/acs.accounts.8b00508. Epub 2018 Dec 26.
8
Liquid Metal-Based Electronics for On-Skin Healthcare.
Biosensors (Basel). 2023 Jan 3;13(1):84. doi: 10.3390/bios13010084.
9
Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications.
ACS Appl Mater Interfaces. 2021 Sep 22;13(37):43831-43854. doi: 10.1021/acsami.1c15014. Epub 2021 Sep 13.
10
Stretchable One-Dimensional Conductors for Wearable Applications.
ACS Nano. 2022 Dec 27;16(12):19810-19839. doi: 10.1021/acsnano.2c08166. Epub 2022 Dec 8.

引用本文的文献

1
Electrically Guided Deposition of Electrospun Nanofibers for Fiber and Cell Pattern Formation.
Macromol Biosci. 2025 Sep;25(9):e00151. doi: 10.1002/mabi.202500151. Epub 2025 May 14.

本文引用的文献

3
Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption.
Sci Adv. 2022 Nov 18;8(46):eabq7703. doi: 10.1126/sciadv.abq7703. Epub 2022 Nov 16.
4
Ultrathin Fiber-Mesh Polymer Thermistors.
Adv Sci (Weinh). 2022 Oct;9(30):e2202312. doi: 10.1002/advs.202202312. Epub 2022 Sep 4.
5
A low-power stretchable neuromorphic nerve with proprioceptive feedback.
Nat Biomed Eng. 2023 Apr;7(4):511-519. doi: 10.1038/s41551-022-00918-x. Epub 2022 Aug 15.
6
Soft, bioresorbable coolers for reversible conduction block of peripheral nerves.
Science. 2022 Jul;377(6601):109-115. doi: 10.1126/science.abl8532. Epub 2022 Jun 30.
7
Antimicrobial second skin using copper nanomesh.
Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2200830119. doi: 10.1073/pnas.2200830119. Epub 2022 Jun 9.
8
A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy.
Science. 2022 May 27;376(6596):1006-1012. doi: 10.1126/science.abm1703. Epub 2022 May 26.
9
Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.
Science. 2022 Mar 25;375(6587):1411-1417. doi: 10.1126/science.abj7564. Epub 2022 Mar 24.
10
Liquid metal-tailored gluten network for protein-based e-skin.
Nat Commun. 2022 Mar 8;13(1):1206. doi: 10.1038/s41467-022-28901-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验