Bian Yuhan, Shi Haozhou, Yuan Qunchen, Zhu Yuxuan, Lin Zhengzi, Zhuang Liujing, Han Xun, Wang Ping, Chen Mengxiao, Wang Xiandi
Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China.
Adv Sci (Weinh). 2024 Jul;11(26):e2309735. doi: 10.1002/advs.202309735. Epub 2024 Apr 30.
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
可拉伸电子器件取得了显著进展,尤其是在传感器和无线通信系统方面,这归因于它们能够与粗糙或不平坦表面实现贴合接触。然而,复杂、多功能且高精度的可拉伸电子器件的发展面临重大挑战,包括刚性 - 柔性界面处的不稳定性以及与传统高精度图案化技术的不兼容性。金属化电纺纳米纤维作为一种有前景的导电填料出现,具有出色的拉伸性、导电性、透明度以及与现有图案化技术的兼容性。在此,本综述聚焦于基于金属化纳米纤维的导电可拉伸复合材料的基本特性、制备工艺、图案化技术及应用场景。首先,介绍了金属化电纺纳米纤维的制造工艺及其相对于其他材料的优势。接着强调了图案化技术的最新进展,包括收集器收集、掩膜气相沉积和光刻,突出它们在提高精度和集成度方面的作用。此外,通过在传感器、无线系统、半导体器件和智能医疗解决方案中的应用,综述展示了金属化电纺纳米纤维在各个领域的广泛适用性和潜在影响。最终,本综述旨在激发进一步的创新并应对可拉伸电子器件中普遍存在的挑战,为这一充满活力的领域的未来突破铺平道路。