Suppr超能文献

用于靶向化学动力学癌症治疗的肿瘤微环境响应性纳米催化剂

Tumor Microenvironment-responsive Nanocatalyst for Targeted Chemodynamic Cancer Therapy.

作者信息

Ma Jun, Qiu Jingjing, Wang Shiren

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Adv Healthc Mater. 2025 Aug;14(22):e2501746. doi: 10.1002/adhm.202501746. Epub 2025 Jun 17.

Abstract

To address the challenges of insufficient hydrogen peroxide (HO) levels, rapid Fe precipitation, and a slow Fenton reaction cycle, tumor-activated, self-accelerating CDT nanocatalysts are synthesized, comprising poly (lactic-co-glycolic acid) (PLGA)-encapsulated Ca-Fe peroxide clusters and polyarginine (R). Nanocatalysts are camouflaged with cancer cell membranes (CCM) to enhance tumor targeting. Additionally, polyarginine tailored the PLGA responsiveness to low HO levels (50-100 µm). HO triggered the degradation of PLGA, releasing CaFe clusters to produce Fe/Fe and additional HO, sustaining the Fenton reaction. Simultaneously, polyarginine releases nitric oxide (NO) in the presence of HO, facilitating Fe reduction to Fe and amplifying •OH generation. In vitro cellular studies demonstrate significantly improved homotypic tumor targeting (6.5-fold increase) and deep spheroid penetration (>120 µm), resulting in improved tumor permeability and elevated •OH generation. Additionally, the nanoparticles exhibit dose-dependent cytotoxicity, and polyarginine notably enhanced the cytotoxicity of CCM-PLGA-CaFe NPs, reducing the IC50 value from 216.9 to 43.38 µg mL. Apoptosis/necrosis assay reveals that the elevated •OH generation by CCM-PLGA-CaFe-R NPs preferentially induced necrosis, effectively inhibiting tumor cell proliferation by 76.3% ± 8.4% over a 7-day treatment. Consequently, this TME-responsive, self-accelerating CDT platform demonstrates enhanced therapeutic efficacy through improved tumor targeting, sustained Fenton reaction, and amplified radical generation.

摘要

为应对过氧化氢(HO)水平不足、铁快速沉淀以及芬顿反应周期缓慢等挑战,合成了肿瘤激活的自加速化学动力学疗法(CDT)纳米催化剂,其由聚(乳酸-乙醇酸)(PLGA)包裹的过氧化钙铁簇和聚精氨酸(R)组成。纳米催化剂用癌细胞膜(CCM)进行伪装以增强肿瘤靶向性。此外,聚精氨酸调整了PLGA对低HO水平(50 - 100 µm)的响应性。HO触发PLGA降解,释放出钙铁簇以产生Fe/Fe和额外的HO,维持芬顿反应。同时,聚精氨酸在HO存在的情况下释放一氧化氮(NO),促进Fe还原为Fe并放大•OH的生成。体外细胞研究表明,同型肿瘤靶向性显著提高(增加了6.5倍)且对深部球体的穿透能力增强(>120 µm),从而改善了肿瘤渗透性并提高了•OH的生成。此外,纳米颗粒表现出剂量依赖性细胞毒性,聚精氨酸显著增强了CCM-PLGA-CaFe纳米颗粒的细胞毒性,将IC50值从216.9降低至43.38 µg mL。凋亡/坏死分析表明,CCM-PLGA-CaFe-R纳米颗粒产生的升高的•OH优先诱导坏死,在7天的治疗中有效抑制肿瘤细胞增殖达76.3%±8.4%。因此,这个肿瘤微环境响应性的、自加速的CDT平台通过改善肿瘤靶向性、持续的芬顿反应和放大的自由基生成展现出增强的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验