Suppr超能文献

通过抑制类施主效应和改善n型Bi(Te, Se)中的择优取向来实现高效热电模块。

Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi(Te, Se).

作者信息

Li Yichen, Bai Shulin, Wen Yi, Zhao Zhe, Wang Lei, Liu Shibo, Zheng Junqing, Wang Siqi, Liu Shan, Gao Dezheng, Liu Dongrui, Zhu Yingcai, Cao Qian, Gao Xiang, Xie Hongyao, Zhao Li-Dong

机构信息

School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Tianmushan Laboratory, Hangzhou 311115, China.

出版信息

Sci Bull (Beijing). 2024 Jun 15;69(11):1728-1737. doi: 10.1016/j.scib.2024.04.034. Epub 2024 Apr 18.

Abstract

Thermoelectric materials have a wide range of application because they can be directly used in refrigeration and power generation. And the BiTe stand out because of its excellent thermoelectric performance and are used in commercial thermoelectric devices. However, n-type BiTe has seriously hindered the development of BiTe-based thermoelectric devices due to its weak mechanical properties and inferior thermoelectric performance. Therefore, it is urgent to develop a high-performance n-type BiTe polycrystalline. In this work, we employed interstitial Cu and the hot deformation process to optimize the thermoelectric properties of BiTeSe, and a high-performance thermoelectric module was fabricated based on this material. Our combined theoretical and experimental effort indicates that the interstitial Cu reduce the defect density in the matrix and suppresses the donor-like effect, leading to a lattice plainification effect in the material. In addition, the two-step hot deformation process significantly improves the preferred orientation of the material and boosts the mobility. As a result, a maximum ZT of 1.27 at 373 K and a remarkable high ZT of 1.22 across the temperature range of 300-425 K are obtained. The thermoelectric generator (TEG, 7-pair) and thermoelectric cooling (TEC, 127-pair) modules were fabricated with our n-type textured CuBiTeSe coupled with commercial p-type BiTe. The TEC module demonstrates superior cooling efficiency compared with the commercial BiTe device, achieving a ΔT of 65 and 83.4 K when the hot end temperature at 300 and 350 K, respectively. In addition, the TEG module attains an impressive conversion efficiency of 6.5% at a ΔT of 225 K, which is almost the highest value among the reported BiTe-based TEG modules.

摘要

热电材料具有广泛的应用,因为它们可以直接用于制冷和发电。而BiTe因其优异的热电性能脱颖而出,并被用于商业热电设备中。然而,n型BiTe由于其较弱的机械性能和较差的热电性能,严重阻碍了基于BiTe的热电设备的发展。因此,迫切需要开发一种高性能的n型BiTe多晶体。在这项工作中,我们采用间隙Cu和热变形工艺来优化BiTeSe的热电性能,并基于这种材料制造了一个高性能的热电模块。我们结合理论和实验的研究表明,间隙Cu降低了基体中的缺陷密度,并抑制了类施主效应,从而在材料中产生晶格平面化效应。此外,两步热变形工艺显著改善了材料的择优取向并提高了迁移率。结果,在373 K时获得了1.27的最大ZT值,在300 - 425 K的温度范围内获得了1.22的显著高ZT值。我们用n型织构化的CuBiTeSe与商用p型BiTe耦合制造了热电发电机(TEG,7对)和热电冷却(TEC,127对)模块。与商用BiTe器件相比,TEC模块表现出卓越的冷却效率,当热端温度分别为300 K和350 K时,实现的温差分别为65 K和83.4 K。此外,TEG模块在225 K的温差下实现了6.5%的令人印象深刻的转换效率,这几乎是报道的基于BiTe的TEG模块中的最高值。

相似文献

2
Hierarchical Low-Temperature n-Type BiTe with High Thermoelectric Performances.具有高热电性能的分级低温n型BiTe
ACS Appl Mater Interfaces. 2024 May 1;16(17):22147-22154. doi: 10.1021/acsami.4c02141. Epub 2024 Apr 19.
8
Isotropic Thermoelectric Performance of Layer-Structured n-Type BiTeSe by Cu Doping.通过铜掺杂实现层状结构n型BiTeSe的各向同性热电性能
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58781-58788. doi: 10.1021/acsami.1c19668. Epub 2021 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验