Mao Dasha, Yang Jianmin, Han Meng, Huang Xiege, Wang Jianrui, Jia Baohai, Wang Zhongbin, Xu Xiao, Xie Lin, Zhou Yi, Li Guodong, Ho Ghim Wei, He Jiaqing
Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen 518055, China.
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Sci Adv. 2025 Sep 5;11(36):eadz1019. doi: 10.1126/sciadv.adz1019.
Here, we demonstrate unconventional scalable and sustainable manufacturing of flexible n-type BiTe films via physical vapor deposition and homo-layer fusion engineering. The achieved ultrahigh power factor of up to 30.0 microwatts per centimeter per square kelvin and ultralow lattice thermal conductivity of 0.38 watts per meter per kelvin at room temperature are attributed to the synergy of modulated modest carrier concentration and weighted mobility in homo-layer films. These results bring forth a maximum output power density of 300 watts per square meter at a temperature gradient of 60 kelvin and a normalized cooling factor of 0.6, which is sufficient to sustain consumer electronics with large-area manufacturing of up to 120 square centimeters. Our developed homo-layer deposition with industry compatibility and scalability potentials highlights a facile yet cost-effective strategy, not only for structure-property relation manipulation in inorganic semiconductors but also for solid-state electronic fabrication for heat harvesting and management frontiers.
在此,我们展示了通过物理气相沉积和同层融合工程实现的柔性n型BiTe薄膜的非常规可扩展且可持续制造。在室温下实现的高达每平方厘米每开尔文30.0微瓦的超高功率因数和每米每开尔文0.38瓦的超低晶格热导率归因于同层薄膜中调制适度的载流子浓度和加权迁移率的协同作用。这些结果在60开尔文的温度梯度下带来了每平方米300瓦的最大输出功率密度和0.6的归一化冷却系数,这足以通过大面积制造高达120平方厘米来维持消费电子产品。我们开发的具有工业兼容性和可扩展性潜力的同层沉积突出了一种简便且具有成本效益的策略,不仅用于无机半导体中的结构-性能关系操纵,还用于热收集和管理前沿的固态电子制造。