Liu Zihang, Gao Weihong, Oshima Hironori, Nagase Kazuo, Lee Chul-Ho, Mori Takao
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Nat Commun. 2022 Mar 2;13(1):1120. doi: 10.1038/s41467-022-28798-4.
Although the thermoelectric effect was discovered around 200 years ago, the main application in practice is thermoelectric cooling using the traditional BiTe. The related studies of new and efficient room-temperature thermoelectric materials and modules have, however, not come to fruition yet. In this work, the electronic properties of n-type MgBiSb material are maximized via delicate microstructural design with the aim of eliminating the thermal grain boundary resistance, eventually leading to a high zT above 1 over a broad temperature range from 323 K to 423 K. Importantly, we further demonstrated a great breakthrough in the non-BiTe thermoelectric module, coupled with the high-performance p-type α-MgAgSb, for room-temperature power generation and thermoelectric cooling. A high conversion efficiency of ~2.8% at the temperature difference of 95 K and a maximum temperature difference of 56.5 K are experimentally achieved. If the interfacial contact resistance is further reduced, our non-BiTe module may rival the long-standing champion commercial BiTe system. Overall, this work represents a substantial step towards the real thermoelectric application using non-BiTe materials and devices.
尽管热电效应在约200年前就已被发现,但实际中的主要应用是使用传统的BiTe进行热电冷却。然而,新型高效室温热电材料及模块的相关研究尚未取得成果。在这项工作中,通过精细的微观结构设计使n型MgBiSb材料的电子性能达到最大化,目的是消除热晶界电阻,最终在323 K至423 K的宽温度范围内实现高于1的高zT值。重要的是,我们进一步展示了非BiTe热电模块与高性能p型α-MgAgSb相结合在室温发电和热电冷却方面取得的重大突破。在95 K的温差下实验实现了约2.8%的高转换效率以及56.5 K的最大温差。如果进一步降低界面接触电阻,我们的非BiTe模块可能会与长期占据领先地位的商用BiTe系统相媲美