Tian Chenxi, Moridi Atieh
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
3D Print Addit Manuf. 2024 Apr 1;11(2):e709-e717. doi: 10.1089/3dp.2022.0152. Epub 2024 Apr 16.
Additive manufacturing (AM) can fabricate intricate structures that are infeasible or uneconomical for conventional manufacturing methods. Its unique capabilities have motivated emergence of several printing technologies and extensive research in material adoption in particular ferrous-, Ti-, and Ni-based alloys. Meanwhile, the large freezing range and high reflectivity of aluminum, a lightweight structural material, greatly reduce aluminum's compatibility with AM. The incompatibility roots from aluminum's unstable behavior in the rapid cyclic thermal conditions in AM and its poor interaction with laser. This hinders the development of laser-based aluminum AM and deteriorates the existing lack of lightweight structural materials in the intermediate temperature range. Aluminum matrix composites (AMCs) have great potential to serve as thermally stable lightweight structural materials, combining lightweight nature of aluminum matrix and strength of reinforcement phases. However, fabrication of AMC largely uses conventional methods, achieving only moderate volume fraction of reinforcement while having limited part complexity compared with AM. To address these challenges, reactive printing (IRP) is adopted as a novel AM method, harnessing the reaction product of dissimilar elemental powder mix to fabricate AMC with an ultra-high volume fraction of intermetallic reinforcement. In this study, the effect of titanium addition to elemental aluminum feedstock powder is systematically studied on different aspects, including material processability, microstructural features, and mechanical performances. The results show that IRP can overcome the incompatibility between AM and aluminum and produce AMC with exceptional volume fraction of reinforcements and outstanding stiffness enhancement when compared with existing AM aluminum alloys and other AMCs.
增材制造(AM)能够制造出对于传统制造方法而言不可行或不经济的复杂结构。其独特的能力促使了多种打印技术的出现,并推动了在材料应用方面的广泛研究,特别是铁基、钛基和镍基合金。与此同时,轻质结构材料铝具有较大的凝固范围和高反射率,这大大降低了铝与增材制造的兼容性。这种不兼容性源于铝在增材制造快速循环热条件下的不稳定行为及其与激光的不良相互作用。这阻碍了基于激光的铝增材制造的发展,并加剧了中间温度范围内现有轻质结构材料的短缺。铝基复合材料(AMC)作为热稳定的轻质结构材料具有巨大潜力,它结合了铝基体的轻质特性和增强相的强度。然而,铝基复合材料的制造主要采用传统方法,与增材制造相比,仅能实现中等体积分数的增强相,且零件复杂性有限。为应对这些挑战,反应打印(IRP)被用作一种新型增材制造方法,利用不同元素粉末混合物的反应产物来制造具有超高体积分数金属间增强相的铝基复合材料。在本研究中,系统地研究了在元素铝原料粉末中添加钛在不同方面的影响,包括材料可加工性、微观结构特征和力学性能。结果表明,与现有的增材制造铝合金和其他铝基复合材料相比,反应打印能够克服增材制造与铝之间的不兼容性,并生产出具有优异增强相体积分数和出色刚度增强效果的铝基复合材料。