Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China.
Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
J Mater Chem B. 2024 May 29;12(21):5194-5206. doi: 10.1039/d3tb02612d.
Hypoxic microenvironment and glutathione (GSH) accumulation in tumours limit the efficacy of cytotoxic reactive oxygen species (ROS) anti-tumour therapy. To address this challenge, we increased the consumption of GSH and the production of ROS through a novel nanoplatform with the action of inorganic nanoenzymes. In this study, we prepared mesoporous FeS using a simple template method, efficiently loaded AIPH, and assembled TiC/FeS-AIPH@BSA (TFAB) nanocomposites through self-assembly with BSA and 2D TiC. The constructed TFAB nanotherapeutic platform enhanced chemodynamic therapy (CDT) by generating toxic hydroxyl radicals (˙OH) FeS, while consuming GSH to reduce the loss of generated ˙OH glutathione oxidase-like (GSH-OXD). In addition, TFAB is able to stimulate the decomposition of AIPH under 808 nm laser irradiation to produce oxygen-independent biotoxic alkyl radicals (˙R) for thermodynamic therapy (TDT). In conclusion, TFAB represents an innovative nanoplatform that effectively addresses the limitations of free radical-based treatment strategies. Through the synergistic therapeutic strategy of photothermal therapy (PTT), CDT, and TDT within the tumor microenvironment, TFAB nanoplatforms achieve controlled AIPH release, ROS generation, intracellular GSH consumption, and precise temperature elevation, resulting in enhanced intracellular oxidative stress, significant apoptotic cell death, and notable tumor growth inhibition. This comprehensive treatment strategy shows great promise in the field of tumor therapy.
缺氧微环境和肿瘤中谷胱甘肽 (GSH) 的积累限制了细胞毒性活性氧 (ROS) 抗肿瘤治疗的疗效。为了解决这一挑战,我们通过一种具有无机纳米酶作用的新型纳米平台来增加 GSH 的消耗和 ROS 的产生。在这项研究中,我们使用简单的模板法制备了介孔 FeS,高效负载 AIPH,并通过 BSA 和二维 TiC 的自组装组装了 TiC/FeS-AIPH@BSA (TFAB) 纳米复合材料。构建的 TFAB 纳米治疗平台通过生成有毒的羟基自由基 (˙OH) 来增强化学动力学治疗 (CDT) FeS,同时消耗 GSH 以减少生成的 ˙OH 谷胱甘肽氧化酶样 (GSH-OXD) 的损失。此外,TFAB 能够在 808nm 激光照射下刺激 AIPH 的分解,产生氧非依赖性生物毒性烷基自由基 (˙R) 用于热力学治疗 (TDT)。总之,TFAB 代表了一种创新的纳米平台,有效地解决了基于自由基的治疗策略的局限性。通过在肿瘤微环境中光热治疗 (PTT)、CDT 和 TDT 的协同治疗策略,TFAB 纳米平台实现了 AIPH 的受控释放、ROS 的产生、细胞内 GSH 的消耗和精确的温度升高,导致细胞内氧化应激增强、显著的细胞凋亡和显著的肿瘤生长抑制。这种综合治疗策略在肿瘤治疗领域具有广阔的应用前景。