Suppr超能文献

基于机器学习的阻塞性睡眠呼吸暂停患者睡眠质量风险预测模型的构建与验证

Construction and Validation of a Machine Learning-Based Risk Prediction Model for Sleep Quality in Patients with OSA.

作者信息

Tong Yangyang, Wen Kuo, Li Enguang, Ai Fangzhu, Tang Ping, Wen Hongjuan, Guo Botang

机构信息

Department of Pulmonary Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117, People's Republic of China.

College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117, People's Republic of China.

出版信息

Nat Sci Sleep. 2025 Jun 12;17:1271-1289. doi: 10.2147/NSS.S516912. eCollection 2025.

Abstract

OBJECTIVE

The aim of this study was to establish a risk prediction model for sleep quality in patients with obstructive sleep apnea (OSA) based on machine learning algorithms with optimal predictive performance.

METHODS

A total of 400 OSA patients were included in this study. A LightGBM model was constructed and compared with other machine learning models, in terms of performance metrics such as the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA). The SHapley Additive exPlanation (SHAP) analysis was used to interpret the model and identify key predictors of sleep quality.

RESULTS

The LightGBM model demonstrated the best predictive performance, with an AUC of 0.910 in the validation set, outperforming support vector machine and random forest. SHAP analysis identified six key predictors of sleep quality: depressive symptoms, OSA duration, oxygen desaturation index (ODI), anxiety symptoms, exercise frequency, and coffee consumption. The model's calibration curve indicated a high degree of agreement between predicted and observed outcomes, and DCA confirmed its clinical utility.

CONCLUSION

The LightGBM model is the best choice for predicting sleep quality in patients with OSA. Depressive symptoms and ODI were the most influential factors negatively associated with sleep quality. This study not only deepens understanding of the factors affecting sleep quality in OSA patients, but also provides a powerful predictive tool for clinical doctors. Future research can explore the potential of incorporating these predictive factors into comprehensive treatment strategies to improve patient prognosis and overall quality of life.

摘要

目的

本研究旨在基于具有最佳预测性能的机器学习算法,建立阻塞性睡眠呼吸暂停(OSA)患者睡眠质量的风险预测模型。

方法

本研究共纳入400例OSA患者。构建了LightGBM模型,并与其他机器学习模型在受试者工作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)等性能指标方面进行比较。采用SHapley加性解释(SHAP)分析来解释模型并识别睡眠质量的关键预测因素。

结果

LightGBM模型表现出最佳的预测性能,在验证集中AUC为0.910,优于支持向量机和随机森林。SHAP分析确定了睡眠质量的六个关键预测因素:抑郁症状、OSA持续时间、氧饱和度下降指数(ODI)、焦虑症状、运动频率和咖啡摄入量。模型的校准曲线表明预测结果与观察结果之间高度一致,DCA证实了其临床实用性。

结论

LightGBM模型是预测OSA患者睡眠质量的最佳选择。抑郁症状和ODI是与睡眠质量负相关的最有影响因素。本研究不仅加深了对影响OSA患者睡眠质量因素的理解,还为临床医生提供了一个强大的预测工具。未来的研究可以探索将这些预测因素纳入综合治疗策略的潜力,以改善患者预后和整体生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e9/12170853/e2289ba909db/NSS-17-1271-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验