Suppr超能文献

基于端到端深度学习的多切片心脏磁共振成像的运动校正和超分辨率。

Motion correction and super-resolution for multi-slice cardiac magnetic resonance imaging via an end-to-end deep learning approach.

机构信息

Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, USA.

Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, USA.

出版信息

Comput Med Imaging Graph. 2024 Jul;115:102389. doi: 10.1016/j.compmedimag.2024.102389. Epub 2024 Apr 29.

Abstract

Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart (V) from acquired CMR SAX slices (V). We define the transformation from V to V as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.33±0.74 mm to 1.36±0.63 mm and generated accurate high resolution 3D volumes with Dice of 0.974±0.010 for left ventricle (LV) and 0.938±0.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.945±0.023 for LV and 0.786±0.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at https://github.com/zhennongchen/CMR_MC_SR_End2End.

摘要

准确重建高分辨率的心脏 3D 容积对于全面的心脏评估至关重要。然而,心脏磁共振(CMR)数据通常以 2D 短轴(SAX)切片的形式采集,由于心脏运动导致切片之间的错位以及 SAX 切片之间的大间隙导致数据稀疏,因此会受到影响。因此,我们旨在提出一个端到端的深度学习(DL)模型来同时解决这两个挑战,为每个挑战采用特定的模型组件。目标是从采集的 CMR SAX 切片(V)重建高分辨率的心脏 3D 容积(V)。我们将从 V 到 V 的变换定义为运动校正和超分辨率的顺序过程。因此,我们的 DL 模型包含两个不同的组件。第一个组件通过预测位移向量来进行运动校正,以准确重新定位每个 SAX 切片。第二个组件从第一个组件获取运动校正后的 SAX 切片,并执行超分辨率以填补数据间隙。这两个组件以顺序方式运行,整个模型端到端进行训练。我们的模型显著减少了切片之间的错位,从最初的 3.33±0.74 mm 减少到 1.36±0.63 mm,并在模拟数据集上生成了准确的高分辨率 3D 容积,左心室(LV)的 Dice 为 0.974±0.010,心肌为 0.938±0.017。与真实世界数据集的 LAX 轮廓相比,我们的模型在 LV 上的 Dice 为 0.945±0.023,在心肌上的 Dice 为 0.786±0.060。在这两个数据集上,具有运动校正和超分辨率特定组件的模型与没有此类设计考虑的模型相比,性能都得到了显著提高。我们模型的代码可在 https://github.com/zhennongchen/CMR_MC_SR_End2End 上获取。

相似文献

4
Automatic Segmentation and Alignment of Uterine Shapes from 3D Ultrasound Data.从 3D 超声数据中自动分割和对齐子宫形状。
Comput Biol Med. 2024 Aug;178:108794. doi: 10.1016/j.compbiomed.2024.108794. Epub 2024 Jun 27.
5
Interventions for infantile haemangiomas of the skin.皮肤婴儿血管瘤的干预措施。
Cochrane Database Syst Rev. 2018 Apr 18;4(4):CD006545. doi: 10.1002/14651858.CD006545.pub3.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验