Suppr超能文献

利用人类和机器智能推动全球层面的气候行动。

Harnessing human and machine intelligence for planetary-level climate action.

作者信息

Debnath Ramit, Creutzig Felix, Sovacool Benjamin K, Shuckburgh Emily

机构信息

Cambridge Zero and Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD United Kingdom.

Division of Humanities and Social Science, California Institute of Technology, Pasadena, CA, 91125 USA.

出版信息

NPJ Clim Action. 2023;2(1):20. doi: 10.1038/s44168-023-00056-3. Epub 2023 Aug 17.

Abstract

The ongoing global race for bigger and better artificial intelligence (AI) systems is expected to have a profound societal and environmental impact by altering job markets, disrupting business models, and enabling new governance and societal welfare structures that can affect global consensus for climate action pathways. However, the current AI systems are trained on biased datasets that could destabilize political agencies impacting climate change mitigation and adaptation decisions and compromise social stability, potentially leading to societal tipping events. Thus, the appropriate design of a less biased AI system that reflects both direct and indirect effects on societies and planetary challenges is a question of paramount importance. In this paper, we tackle the question of data-centric knowledge generation for climate action in ways that minimize biased AI. We argue for the need to co-align a less biased AI with an epistemic web on planetary health challenges for more trustworthy decision-making. A human-in-the-loop AI can be designed to align with three goals. First, it can contribute to a planetary epistemic web that supports climate action. Second, it can directly enable mitigation and adaptation interventions through knowledge of social tipping elements. Finally, it can reduce the data injustices associated with AI pretraining datasets.

摘要

全球范围内对更强大、更优质人工智能(AI)系统的持续竞争,预计将通过改变就业市场、扰乱商业模式以及建立新的治理和社会福利结构,对社会和环境产生深远影响,而这些新结构可能会影响全球在气候行动路径上的共识。然而,当前的人工智能系统是基于有偏差的数据集进行训练的,这可能会破坏影响气候变化缓解和适应决策的政治机构的稳定性,并危及社会稳定,甚至可能引发社会 tipping 事件。因此,设计一个偏差较小的人工智能系统,使其能反映对社会和地球挑战的直接和间接影响,是一个至关重要的问题。在本文中,我们以尽量减少有偏差人工智能的方式,解决气候行动中以数据为中心的知识生成问题。我们主张,为了做出更值得信赖的决策,需要使偏差较小的人工智能与关于地球健康挑战的认知网络相互协调。可以将人在回路的人工智能设计为符合三个目标。首先,它可以为支持气候行动的地球认知网络做出贡献。其次,它可以通过了解社会 tipping 因素,直接促成缓解和适应干预措施。最后,它可以减少与人工智能预训练数据集相关的数据不公正现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0985/11062317/18bd98a94418/44168_2023_56_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验