Suppr超能文献

基于多组学生物活性谱的化学分组与读通:以大型溞和偶氮染料为例的研究。

Multi-omics bioactivity profile-based chemical grouping and read-across: a case study with Daphnia magna and azo dyes.

机构信息

School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Michabo Health Science Limited, Union House, 111 New Union Street, Coventry, CV1 2NT, UK.

出版信息

Arch Toxicol. 2024 Aug;98(8):2577-2588. doi: 10.1007/s00204-024-03759-6. Epub 2024 May 2.

Abstract

Grouping/read-across is widely used for predicting the toxicity of data-poor target substance(s) using data-rich source substance(s). While the chemical industry and the regulators recognise its benefits, registration dossiers are often rejected due to weak analogue/category justifications based largely on the structural similarity of source and target substances. Here we demonstrate how multi-omics measurements can improve confidence in grouping via a statistical assessment of the similarity of molecular effects. Six azo dyes provided a pool of potential source substances to predict long-term toxicity to aquatic invertebrates (Daphnia magna) for the dye Disperse Yellow 3 (DY3) as the target substance. First, we assessed the structural similarities of the dyes, generating a grouping hypothesis with DY3 and two Sudan dyes within one group. Daphnia magna were exposed acutely to equi-effective doses of all seven dyes (each at 3 doses and 3 time points), transcriptomics and metabolomics data were generated from 760 samples. Multi-omics bioactivity profile-based grouping uniquely revealed that Sudan 1 (S1) is the most suitable analogue for read-across to DY3. Mapping ToxPrint structural fingerprints of the dyes onto the bioactivity profile-based grouping indicated an aromatic alcohol moiety could be responsible for this bioactivity similarity. The long-term reproductive toxicity to aquatic invertebrates of DY3 was predicted from S1 (21-day NOEC, 40 µg/L). This prediction was confirmed experimentally by measuring the toxicity of DY3 in D. magna. While limitations of this 'omics approach are identified, the study illustrates an effective statistical approach for building chemical groups.

摘要

分组/读码广泛用于使用富含数据的源物质预测数据不足的靶物质的毒性。虽然化学工业和监管机构认识到其益处,但由于基于源物质和靶物质的结构相似性的类似物/类别理由较弱,注册文件经常被拒绝。在这里,我们通过对分子效应相似性的统计评估来展示多组学测量如何提高分组的置信度。六种偶氮染料提供了一个潜在的源物质池,可用于预测染料分散黄 3 (DY3)作为靶物质对水生无脊椎动物(大型溞)的长期毒性。首先,我们评估了染料的结构相似性,生成了一个分组假设,将 DY3 和两种苏丹染料归为一组。大型溞急性暴露于七种染料的等效有效剂量(每种染料在 3 个剂量和 3 个时间点),从 760 个样本中生成转录组学和代谢组学数据。基于多组学生物活性谱的分组独特地揭示,苏丹红 1(S1)是最适合用于 DY3 读码的类似物。将染料的 ToxPrint 结构指纹映射到基于生物活性谱的分组上表明,芳香醇部分可能是这种生物活性相似性的原因。从 S1 预测了 DY3 对水生无脊椎动物的长期生殖毒性(21 天 NOEC,40μg/L)。通过在大型溞中测量 DY3 的毒性,实验证实了这一预测。虽然这种“组学”方法存在局限性,但该研究说明了建立化学分组的有效统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b7/11272716/a50de045e00a/204_2024_3759_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验