Suppr超能文献

基于 GaN 微柱阵列和多晶层的扩展栅 FET 生物传感器:在人尿液中 Hg 检测的应用。

Extended-Gate FET Biosensor Based on GaN Micropillar Array and Polycrystalline Layer: Application to Hg Detection in Human Urine.

机构信息

School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China.

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Anal Chem. 2024 May 14;96(19):7577-7584. doi: 10.1021/acs.analchem.4c00435. Epub 2024 May 2.

Abstract

Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(μg/L) and a wide linear range (1 ng/L-24.5 μg/L). In addition, the detection of Hg in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.

摘要

由于场效应晶体管(FET)器件与传感环境的分离,扩展栅极 FET(EGFET)生物传感器具有高稳定性和低成本的特点。本文制备了一种基于 GaN 微柱阵列和多晶层(GMP)的高灵敏度 EGFET 生物传感器,该传感器采用简单的一步低温 MOCVD 生长法制备而成。为了提高 EGFET 生物传感器的灵敏度和检测限,可以通过微柱阵列和多晶层分别提高扩展栅极电极的表面积和电导率。设计的 GMP-EGFET 生物传感器用 l-半胱氨酸进行了修饰,并用于 Hg 检测,检测限(LOD)低至 1ng/L,灵敏度高达-16.3mV/lg(μg/L),线性范围宽(1ng/L-24.5μg/L)。此外,还实现了对人尿液中 Hg 的检测,LOD 为 10ng/L,比已报道的传感器低 30 多倍。据我们所知,这是首次将 GMP 用作 EGFET 生物传感器的扩展栅极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验