Suppr超能文献

ELRL-MD:一种基于深度学习的方法,使用集成和强化学习的心脏磁共振图像进行心肌炎诊断。

ELRL-MD: a deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration.

机构信息

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.

Department of Mathematics, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr 7516913817, Iran.

出版信息

Physiol Meas. 2024 May 21;45(5). doi: 10.1088/1361-6579/ad46e2.

Abstract

Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.

摘要

心肌炎对健康构成重大威胁,通常由冠状病毒病等病毒感染引发,并可能导致致命的心脏并发症。作为一种比心内膜心肌活检标准诊断方法更具侵入性的替代方法,心磁共振(CMR)成像为检测心肌异常提供了一种有前途的解决方案。该研究引入了一种名为 ELRL-MD 的深度模型,该模型将集成学习和强化学习(RL)结合在一起,用于从 CMR 图像中进行有效的心肌炎诊断。该模型首先通过人工蜂群(ABC)算法进行预训练,以增强学习的起点。然后,一系列卷积神经网络(CNN)协同工作,从 CMR 图像中提取和整合特征,以进行准确的诊断。该模型利用 Z-Alizadeh Sani 心肌炎 CMR 数据集,通过将诊断概念化为决策过程,利用 RL 来解决数据集的不平衡问题。ELRL-MD 表现出显著的疗效,超过了其他深度学习、传统机器学习和迁移学习模型,其 F 测度达到 88.2%,几何平均值达到 90.6%。大量的实验有助于确定最佳的奖励函数设置和最佳 CNN 数量。该研究解决了 CMR 成像数据集中固有的数据不平衡以及由于初始权重设置不佳而导致模型收敛到局部最优的主要技术挑战。进一步的分析,剔除 ABC 和 RL 组件,证实了它们对模型整体性能的贡献,突出了应对这些关键技术挑战的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验