Bohang Li, Li Ningxin, Yang Jing, Alfarraj Osama, Albelhai Fahad, Tolba Amr, Shaikh Zaffar Ahmed, Alizadehsani Roohallah, Pławiak Paweł, Yee Por Lip
Data science, Shopee, Singapore, 118265, Singapore.
Fu Foundation School of Engineering and Applied Science, Columbia University, New York, 10027, USA.
Sci Rep. 2025 Mar 1;15(1):7340. doi: 10.1038/s41598-025-92082-w.
Image steganalysis, detecting hidden data in digital images, is essential for enhancing digital security. Traditional steganalysis methods typically rely on large, pre-labeled image datasets, which are difficult and costly to compile. To address this, this paper introduces an innovative approach that combines active learning and off-policy Deep Reinforcement Learning (DRL) to improve image steganalysis with minimal labeled data. Active learning allows the model to intelligently choose which unlabeled images should be annotated, thus reducing the amount of labeled data needed for effective training. Traditional active learning strategies often use static selection methods that restrict flexibility and do not adjust well to dynamic environments. To overcome this, our method incorporates off-policy DRL for strategic data selection. The off-policy in DRL can increase sample efficiency and significantly enhance learning outcomes. We also use the Differential Evolution (DE) algorithm to fine-tune the hyperparameters of the model, reducing its sensitivity to different settings and ensuring more stable results. Our testing on the extensive BossBase 1.01 and BOWS-2 datasets demonstrates the robust ability of the approach to distinguish between unaltered and steganographic images, achieving an average F-measure of 93.152% on BossBase 1.01 and 91.834% on the BOWS-2 dataset. In summary, this research enhances digital security by employing advanced image steganalysis to detect hidden data, significantly improving detection accuracy with minimal labeled data.
图像隐写分析,即检测数字图像中的隐藏数据,对于增强数字安全至关重要。传统的隐写分析方法通常依赖于大型的、预先标注的图像数据集,而这些数据集的编译既困难又昂贵。为了解决这个问题,本文引入了一种创新方法,该方法结合了主动学习和离策略深度强化学习(DRL),以用最少的标注数据改进图像隐写分析。主动学习允许模型智能地选择哪些未标注图像应该被标注,从而减少有效训练所需的标注数据量。传统的主动学习策略通常使用静态选择方法,这些方法限制了灵活性,并且不能很好地适应动态环境。为了克服这一点,我们的方法纳入了离策略DRL用于策略性数据选择。DRL中的离策略可以提高样本效率并显著增强学习效果。我们还使用差分进化(DE)算法来微调模型的超参数,降低其对不同设置的敏感性并确保更稳定的结果。我们在广泛的BossBase 1.01和BOWS - 2数据集上的测试表明,该方法具有强大的能力来区分未改变的图像和隐写图像,在BossBase 1.01上实现了平均F值为93.152%,在BOWS - 2数据集上为91.834%。总之,本研究通过采用先进的图像隐写分析来检测隐藏数据,以最少的标注数据显著提高检测准确率,从而增强了数字安全。