Suppr超能文献

一种使用残差视觉Transformer的新型植物叶片病害检测分层框架。

A novel hierarchical framework for plant leaf disease detection using residual vision transformer.

作者信息

Vallabhajosyula Sasikala, Sistla Venkatramaphanikumar, Kolli Venkata Krishna Kishore

机构信息

Department of CSE, Vignan's Nirula Institute of Technology and Science for Women, Guntur, Andhra Pradesh, India.

Department of CSE, Vignan's Foundation for Science, Technology, and Research, Guntur, Andhra Pradesh, India.

出版信息

Heliyon. 2024 Apr 22;10(9):e29912. doi: 10.1016/j.heliyon.2024.e29912. eCollection 2024 May 15.

Abstract

Early detection of plant leaf diseases accurately and promptly is very crucial for safeguarding agricultural crop productivity and ensuring food security. During their life cycle, plant leaves get diseased because of multiple factors like bacteria, fungi, weather conditions, etc. In this work, the authors propose a model that aids in the early detection of leaf diseases using a novel hierarchical residual vision transformer using improved Vision Transformer and ResNet9 models. The proposed model can extract more meaningful and discriminating details by reducing the number of trainable parameters with a smaller number of computations. The proposed method is evaluated on the Local Crop dataset, Plant Village dataset, and Extended Plant Village Dataset with 13, 38, and 51 different leaf disease classes. The proposed model is trained using the best trail parameters of Improved Vision Transformer and classified the features using ResNet 9. Performance evaluation is carried out on a wide aspects over the aforementioned datasets and results revealed that the proposed model outperforms other models such as InceptionV3, MobileNetV2, and ResNet50.

摘要

准确及时地早期检测植物叶片病害对于保障农作物产量和确保粮食安全至关重要。在其生命周期中,植物叶片会因细菌、真菌、天气条件等多种因素而患病。在这项工作中,作者提出了一种模型,该模型使用一种新颖的分层残差视觉Transformer,结合改进的视觉Transformer和ResNet9模型,有助于早期检测叶片病害。所提出的模型可以通过减少可训练参数的数量和较少的计算量来提取更有意义和更具区分性的细节。该方法在包含13、38和51种不同叶片病害类别的本地作物数据集、植物村数据集和扩展植物村数据集上进行了评估。所提出的模型使用改进视觉Transformer的最佳试验参数进行训练,并使用ResNet 9对特征进行分类。在上述数据集上从多个方面进行了性能评估,结果表明所提出的模型优于其他模型,如InceptionV3、MobileNetV2和ResNet50。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dfd/11064133/c84527228878/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验