Suppr超能文献

水中常见光催化剂的光谱和电化学性质:水相光氧化还原催化手册

Spectral and Electrochemical Properties of Common Photocatalysts in Water: A Compendium for Aqueous Photoredox Catalysis.

作者信息

Gary Samuel, Landry Melinda, Bloom Steven

机构信息

Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.

出版信息

Synlett. 2023 Oct;34(16):1911-1914. doi: 10.1055/a-2097-1051. Epub 2023 Jul 10.

Abstract

Electrochemical potentials of photocatalysts are solvent dependent. One of the largest discrepancies is observed when water is used in place of organic solvents as the reaction media. Unfortunately, the redox potentials for many photocatalysts in water have not been determined, at least under one unifying set of conditions, and this greatly hinders the rational design of sustainable and biocompatible photoredox reactions. Herein, we measure the spectral and electrochemical properties of the most common photoredox catalysts in water and catalog their absorption and fluorescence maxima and ground- and excited-state potentials.

摘要

光催化剂的电化学势取决于溶剂。当用水代替有机溶剂作为反应介质时,会观察到最大的差异之一。遗憾的是,至少在一组统一的条件下,许多光催化剂在水中的氧化还原电位尚未确定,这极大地阻碍了可持续和生物相容性光氧化还原反应的合理设计。在此,我们测量了水中最常见的光氧化还原催化剂的光谱和电化学性质,并列出了它们的最大吸收和荧光以及基态和激发态电位。

相似文献

2
Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Acc Chem Res. 2022 May 3;55(9):1290-1300. doi: 10.1021/acs.accounts.2c00075. Epub 2022 Apr 12.
3
Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
J Org Chem. 2016 Aug 19;81(16):7244-9. doi: 10.1021/acs.joc.6b01240. Epub 2016 Jul 25.
4
Coerulein B: a water-soluble and water-compatible near-infrared photoredox catalyst.
Phys Chem Chem Phys. 2024 Jan 31;26(5):4474-4479. doi: 10.1039/d3cp05585j.
5
Merging Visible Light Photoredox and Gold Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2261-2272. doi: 10.1021/acs.accounts.6b00351. Epub 2016 Sep 9.
7
Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
Acc Chem Res. 2016 Jun 21;49(6):1320-30. doi: 10.1021/acs.accounts.6b00012. Epub 2016 Mar 29.
9
Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
Acc Chem Res. 2016 Oct 18;49(10):2316-2327. doi: 10.1021/acs.accounts.6b00293. Epub 2016 Sep 26.

引用本文的文献

1
Diblock Copolypeptoid Micelles as Platform for Aqueous Photoredox Cyanation of Arenes.
J Am Chem Soc. 2025 Aug 13;147(32):29152-29161. doi: 10.1021/jacs.5c07882. Epub 2025 Aug 4.

本文引用的文献

1
Illuminating Photoredox Catalysis.
Trends Chem. 2019 Apr;1(1):111-125. doi: 10.1016/j.trechm.2019.01.008. Epub 2019 Feb 22.
2
Visible-Light Photoredox Catalysis in Water.
J Org Chem. 2023 May 19;88(10):6284-6293. doi: 10.1021/acs.joc.2c00805. Epub 2022 Jun 14.
3
Photoredox-Catalyzed C-H Functionalization Reactions.
Chem Rev. 2022 Jan 26;122(2):1925-2016. doi: 10.1021/acs.chemrev.1c00311. Epub 2021 Sep 29.
5
Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis.
Chem Rev. 2022 Jan 26;122(2):1717-1751. doi: 10.1021/acs.chemrev.1c00247. Epub 2021 Jul 7.
6
Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis.
Synlett. 2019;30(7):827-832. doi: 10.1055/s-0037-1611744. Epub 2019 Mar 12.
7
Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis.
Beilstein J Org Chem. 2020 May 29;16:1163-1187. doi: 10.3762/bjoc.16.103. eCollection 2020.
8
Photoredox Catalysis in Organic Chemistry.
J Org Chem. 2016 Aug 19;81(16):6898-926. doi: 10.1021/acs.joc.6b01449. Epub 2016 Aug 1.
9
Organic Photoredox Catalysis.
Chem Rev. 2016 Sep 14;116(17):10075-166. doi: 10.1021/acs.chemrev.6b00057. Epub 2016 Jun 10.
10
Formation of iridium(IV) oxide (IrOX) films by electroflocculation.
Langmuir. 2013 Oct 1;29(39):12254-8. doi: 10.1021/la4025876. Epub 2013 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验