Suppr超能文献

基于核的单细胞差异分析测试。

Kernel-based testing for single-cell differential analysis.

机构信息

Nantes Université, Centrale Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, F-44000, Nantes, France.

Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.

出版信息

Genome Biol. 2024 May 3;25(1):114. doi: 10.1186/s13059-024-03255-1.

Abstract

Single-cell technologies offer insights into molecular feature distributions, but comparing them poses challenges. We propose a kernel-testing framework for non-linear cell-wise distribution comparison, analyzing gene expression and epigenomic modifications. Our method allows feature-wise and global transcriptome/epigenome comparisons, revealing cell population heterogeneities. Using a classifier based on embedding variability, we identify transitions in cell states, overcoming limitations of traditional single-cell analysis. Applied to single-cell ChIP-Seq data, our approach identifies untreated breast cancer cells with an epigenomic profile resembling persister cells. This demonstrates the effectiveness of kernel testing in uncovering subtle population variations that might be missed by other methods.

摘要

单细胞技术提供了分子特征分布的深入见解,但比较它们存在挑战。我们提出了一种用于非线性细胞分布比较的核检验框架,分析基因表达和表观遗传修饰。我们的方法允许特征和全局转录组/表观基因组比较,揭示细胞群体异质性。使用基于嵌入变异性的分类器,我们识别细胞状态的转变,克服传统单细胞分析的局限性。应用于单细胞 ChIP-Seq 数据,我们的方法鉴定出具有类似于持久性细胞表型的未处理乳腺癌细胞。这证明了核检验在揭示其他方法可能遗漏的微妙群体变化方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/608c/11069218/34b43d03b2eb/13059_2024_3255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验