Suppr超能文献

基于数据的新生儿健康和发病情况的纵向特征描述。

Data-driven longitudinal characterization of neonatal health and morbidity.

机构信息

Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Sci Transl Med. 2023 Feb 15;15(683):eadc9854. doi: 10.1126/scitranslmed.adc9854.

Abstract

Although prematurity is the single largest cause of death in children under 5 years of age, the current definition of prematurity, based on gestational age, lacks the precision needed for guiding care decisions. Here, we propose a longitudinal risk assessment for adverse neonatal outcomes in newborns based on a deep learning model that uses electronic health records (EHRs) to predict a wide range of outcomes over a period starting shortly before conception and ending months after birth. By linking the EHRs of the Lucile Packard Children's Hospital and the Stanford Healthcare Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 and 2018. Maternal and newborn EHRs were extracted and used to train a multi-input multitask deep learning model, featuring a long short-term memory neural network, to predict 24 different neonatal outcomes. An additional cohort of 10,250 mother-newborn dyads delivered at the same Stanford Hospitals from 2019 to September 2020 was used to validate the model. Areas under the receiver operating characteristic curve at delivery exceeded 0.9 for 10 of the 24 neonatal outcomes considered and were between 0.8 and 0.9 for 7 additional outcomes. Moreover, comprehensive association analysis identified multiple known associations between various maternal and neonatal features and specific neonatal outcomes. This study used linked EHRs from more than 30,000 mother-newborn dyads and would serve as a resource for the investigation and prediction of neonatal outcomes. An interactive website is available for independent investigators to leverage this unique dataset: https://maternal-child-health-associations.shinyapps.io/shiny_app/.

摘要

尽管早产是 5 岁以下儿童死亡的主要原因,但目前基于胎龄的早产定义缺乏指导护理决策所需的精确性。在这里,我们提出了一种基于深度学习模型的新生儿不良新生儿结局的纵向风险评估方法,该模型使用电子健康记录 (EHR) 来预测从受孕前不久开始到出生后数月结束的广泛结局。通过链接 Lucile Packard 儿童医院和斯坦福医疗保健成人医院的 EHR,我们开发了一个由 22,104 对在 2014 年至 2018 年期间分娩的母婴对组成的队列。提取了母婴的 EHR,并用于训练一个多输入多任务深度学习模型,该模型采用长短期记忆神经网络,预测 24 种不同的新生儿结局。另外一个由 2019 年至 2020 年 9 月在同一斯坦福医院分娩的 10,250 对母婴对组成的队列用于验证该模型。在分娩时,24 种新生儿结局中有 10 种的受试者工作特征曲线下面积超过 0.9,7 种额外的新生儿结局的面积在 0.8 和 0.9 之间。此外,综合关联分析确定了各种母婴特征与特定新生儿结局之间的多个已知关联。这项研究使用了超过 30000 对母婴对的 EHR,并将成为调查和预测新生儿结局的资源。一个交互式网站可供独立研究人员利用这个独特的数据集:https://maternal-child-health-associations.shinyapps.io/shiny_app/。

相似文献

1
Data-driven longitudinal characterization of neonatal health and morbidity.
Sci Transl Med. 2023 Feb 15;15(683):eadc9854. doi: 10.1126/scitranslmed.adc9854.
2
A multicenter prospective study of neonatal outcomes at less than 32 weeks associated with indications for maternal admission and delivery.
Am J Obstet Gynecol. 2017 Jul;217(1):72.e1-72.e9. doi: 10.1016/j.ajog.2017.02.043. Epub 2017 Mar 3.
3
Improving preterm newborn identification in low-resource settings with machine learning.
PLoS One. 2019 Feb 27;14(2):e0198919. doi: 10.1371/journal.pone.0198919. eCollection 2019.
4
Fetal growth restriction and small for gestational age as predictors of neonatal morbidity: which growth nomogram to use?
Am J Obstet Gynecol. 2023 Dec;229(6):678.e1-678.e16. doi: 10.1016/j.ajog.2023.06.035. Epub 2023 Jun 20.
7
Impact of mode of conception on neonatal and neurodevelopmental outcomes in preterm infants.
Hum Reprod. 2019 Feb 1;34(2):356-364. doi: 10.1093/humrep/dey345.
8
Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation.
J Matern Fetal Neonatal Med. 2020 Jan;33(1):73-80. doi: 10.1080/14767058.2018.1487395. Epub 2018 Jul 18.
9
Early dyadic patterns of mother-infant interactions and outcomes of prematurity at 18 months.
Pediatrics. 2006 Jul;118(1):e107-14. doi: 10.1542/peds.2005-1145.

引用本文的文献

2
Role of Cellular Senescence in IUGR: Impact on Fetal Morbidity and Development.
Cells. 2025 Jul 17;14(14):1097. doi: 10.3390/cells14141097.
3
AI-guided precision parenteral nutrition for neonatal intensive care units.
Nat Med. 2025 Mar 25. doi: 10.1038/s41591-025-03601-1.
4
Mitigation of outcome conflation in predicting patient outcomes using electronic health records.
J Am Med Inform Assoc. 2025 May 1;32(5):920-927. doi: 10.1093/jamia/ocaf033.
5
A machine learning approach to leveraging electronic health records for enhanced omics analysis.
Nat Mach Intell. 2025;7(2):293-306. doi: 10.1038/s42256-024-00974-9. Epub 2025 Jan 16.
6
Applications of Metabolomics and Lipidomics in the Neonatal Intensive Care Unit.
Neoreviews. 2025 Feb 1;26(2):e100-e114. doi: 10.1542/neo.26-2-011.
7
Cross-modal contrastive learning for unified placenta analysis using photographs.
Patterns (N Y). 2024 Nov 19;5(12):101097. doi: 10.1016/j.patter.2024.101097. eCollection 2024 Dec 13.
8
Towards a new taxonomy of preterm birth.
J Perinatol. 2024 Nov 20. doi: 10.1038/s41372-024-02183-z.
10
Artificial Intelligence in Perioperative Care: Opportunities and Challenges.
Anesthesiology. 2024 Aug 1;141(2):379-387. doi: 10.1097/ALN.0000000000005013.

本文引用的文献

4
Anemia of prematurity: how low is too low?
J Perinatol. 2021 Jun;41(6):1244-1257. doi: 10.1038/s41372-021-00992-0. Epub 2021 Mar 4.
6
Variations in Neonatal Length of Stay of Babies Born Extremely Preterm: An International Comparison Between iNeo Networks.
J Pediatr. 2021 Jun;233:26-32.e6. doi: 10.1016/j.jpeds.2021.02.015. Epub 2021 Feb 15.
7
Data-Driven Modeling of Pregnancy-Related Complications.
Trends Mol Med. 2021 Aug;27(8):762-776. doi: 10.1016/j.molmed.2021.01.007. Epub 2021 Feb 8.
9
Comments on the 20 Anniversary of .
Neoreviews. 2020 Oct;21(10):e643-e648. doi: 10.1542/neo.21-10-e643.
10
Inferring pregnancy episodes and outcomes within a network of observational databases.
PLoS One. 2018 Feb 1;13(2):e0192033. doi: 10.1371/journal.pone.0192033. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验