Menon Karthik, Khan Muhammed Owais, Sexton Zachary A, Richter Jakob, Nguyen Patricia K, Malik Sachin B, Boyd Jack, Nieman Koen, Marsden Alison L
Department of Pediatrics (Cardiology), Stanford School of Medicine, Stanford, CA USA.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA USA.
Npj Imaging. 2024;2(1):9. doi: 10.1038/s44303-024-00014-6. Epub 2024 May 1.
Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges - incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.
利用基于临床成像的解剖模型对冠状动脉血流进行计算模拟,是一种新兴的用于个性化治疗规划的非侵入性工具。然而,当前的模拟面临两个相关挑战——基于图像的模型中存在不完整的解剖结构,这是由于小于成像分辨率的动脉被排除在外,以及缺乏由患者特异性成像提供的个性化血流分布。我们引入了一个数据驱动、个性化且多尺度的血流模拟框架,该框架涵盖了从大冠状动脉到心肌微血管系统。它包括基于图像的冠状动脉解剖结构,结合了针对低于成像分辨率的动脉的合成血管系统,使用达西模型模拟的心肌血流,以及表示为集总参数网络的体循环。我们提出了一种基于优化的方法,通过吸收临床CT心肌灌注成像和心功能测量数据来实现多尺度冠状动脉血流模拟的个性化,以产生患者特异性的血流分布和模型参数。通过对一组六名患者进行的这项概念验证研究,我们揭示了所提出的个性化框架与纯粹基于解剖结构的经验方法之间在血流分布和临床诊断指标上存在显著差异;这些误差无法事先预测。这表明虚拟治疗规划工具将受益于新兴成像方法带来的更高个性化程度。