Suppr超能文献

通过计算模型预测应激状态下的心肌血流。

Prediction of myocardial blood flow under stress conditions by means of a computational model.

机构信息

Dipartimento Di Matematica, MOX, Politecnico Di Milano, Milan, Italy.

LABS, Dipartimento Di Chimica, Materiali E Ingegneria Chimica, Politecnico Di Milano, Milan, Italy.

出版信息

Eur J Nucl Med Mol Imaging. 2022 May;49(6):1894-1905. doi: 10.1007/s00259-021-05667-8. Epub 2022 Jan 5.

Abstract

PURPOSE

Quantification of myocardial blood flow (MBF) and functional assessment of coronary artery disease (CAD) can be achieved through stress myocardial computed tomography perfusion (stress-CTP). This requires an additional scan after the resting coronary computed tomography angiography (cCTA) and administration of an intravenous stressor. This complex protocol has limited reproducibility and non-negligible side effects for the patient. We aim to mitigate these drawbacks by proposing a computational model able to reproduce MBF maps.

METHODS

A computational perfusion model was used to reproduce MBF maps. The model parameters were estimated by using information from cCTA and MBF measured from stress-CTP (MBF) maps. The relative error between the computational MBF under stress conditions (MBF) and MBF was evaluated to assess the accuracy of the proposed computational model.

RESULTS

Applying our method to 9 patients (4 control subjects without ischemia vs 5 patients with myocardial ischemia), we found an excellent agreement between the values of MBF and MBF. In all patients, the relative error was below 8% over all the myocardium, with an average-in-space value below 4%.

CONCLUSION

The results of this pilot work demonstrate the accuracy and reliability of the proposed computational model in reproducing MBF under stress conditions. This consistency test is a preliminary step in the framework of a more ambitious project which is currently under investigation, i.e., the construction of a computational tool able to predict MBF avoiding the stress protocol and potential side effects while reducing radiation exposure.

摘要

目的

通过应激心肌计算机断层灌注(应激-CTP)可以实现心肌血流(MBF)的定量和冠状动脉疾病(CAD)的功能评估。这需要在静息冠状动脉计算机断层血管造影(cCTA)后进行额外的扫描,并给予静脉内应激剂。这种复杂的方案对患者的可重复性和不可忽视的副作用有限。我们旨在通过提出一种能够再现 MBF 图的计算模型来减轻这些缺点。

方法

使用计算灌注模型来再现 MBF 图。通过使用来自 cCTA 的信息和来自应激-CTP(MBF)图的 MBF 测量值来估计模型参数。通过评估计算条件下 MBF(MBF)和 MBF 之间的相对误差来评估所提出的计算模型的准确性。

结果

将我们的方法应用于 9 例患者(4 例无缺血的对照患者与 5 例心肌缺血患者),我们发现 MBF 和 MBF 值之间存在极好的一致性。在所有患者中,整个心肌的相对误差均低于 8%,空间平均值低于 4%。

结论

这项初步工作的结果表明,所提出的计算模型在再现应激条件下的 MBF 方面具有准确性和可靠性。这项一致性测试是正在进行的更具野心项目的初步步骤,即构建一种能够避免应激方案和潜在副作用并减少辐射暴露的计算工具来预测 MBF。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验