Suppr超能文献

利用降维方法可视化高通量显微镜下的表型变化。

Using Dimensionality Reduction to Visualize Phenotypic Changes in High-Throughput Microscopy.

机构信息

Microsoft Research New England, Cambridge, MA, USA.

Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.

出版信息

Methods Mol Biol. 2024;2800:217-229. doi: 10.1007/978-1-0716-3834-7_15.

Abstract

High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed. Here, we suggest that changes in cellular phenotype can be visualized in reduced dimensionality representations of the image feature space. We describe a freely available analysis pipeline to visualize changes in protein localization in feature spaces obtained from deep learning. As an example, we use the pipeline to identify changes in subcellular localization after the yeast GFP collection was treated with hydroxyurea.

摘要

高通量显微镜使以前所未有的规模筛选细胞表型成为可能。系统地识别细胞表型变化(如细胞形态和蛋白质定位变化)是主要的分析目标。由于细胞表型是高维的,因此仍然需要使用无偏的方法来检测和可视化表型的变化。在这里,我们提出可以在图像特征空间的降维表示中可视化细胞表型的变化。我们描述了一个免费的分析管道,用于可视化从深度学习获得的特征空间中蛋白质定位的变化。作为一个例子,我们使用该管道来识别酵母 GFP 文库在用羟基脲处理后亚细胞定位的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验