Suppr超能文献

基于人工智能的智能手机应用程序,用于在咬合翼片X光片上进行实时龋齿检测。

Artificial intelligence enabled smart phone app for real-time caries detection on bitewing radiographs.

作者信息

Dhanak Nupur, Chougule Vaibhav T, Nalluri Keerthi, Kakkad Ankur, Dhimole Ankit, Parihar Anuj Singh

机构信息

Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Ahmadabad, Gujarat, India.

Department of Paediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, Maharashtra, India.

出版信息

Bioinformation. 2024 Mar 31;20(3):243-247. doi: 10.6026/973206300200243. eCollection 2024.

Abstract

Diagnosis of proximal caries is a difficult task. Artificial intelligence (AI) enabled diagnosis is gaining momentum. Therefore, it is of interest to evaluate the effectiveness of an artificial intelligence (AI) smart phone application for bitewing radiography towards real-time caries lesion detection. The Efficient Det-Lite1 artificial neural network was used after training 100 radiographic images obtained from the department of Oral Medicine. Trained model was then installed in a Google Pixel 6 (GP6) smartphone as artificial intelligence app. The back-facing mobile phone video camera of GP6 was utilised to detect caries lesions on 100 bitewing radiographs (BWR) with 80 carious lesion in real-time. Two different techniques such as scanning the static BWR on laptop with a moving mobile and scanning the moving radiograph on the laptop with stationery mobile were used. The average value of sensitivity/precision/F1 scores for both the techniques was 0.75/0.846 and 0.795 respectively. AI programme using the rear-facing mobile phone video camera was found to detect 75% of caries lesions in real time on 100 BWR with a precision of 84.6%. Thus, the use of AI with smart phone app is useful for caries diagnosis which is readily accessible, easy to use and fast.

摘要

近端龋齿的诊断是一项艰巨的任务。人工智能(AI)辅助诊断正日益受到关注。因此,评估一款用于咬合翼片X线摄影的人工智能(AI)智能手机应用程序在实时检测龋齿病变方面的有效性具有重要意义。在对从口腔医学科获取的100张X线影像进行训练后,使用了高效Det-Lite1人工神经网络。然后,将训练好的模型作为人工智能应用程序安装在谷歌像素6(GP6)智能手机中。利用GP6的后置手机摄像头实时检测100张咬合翼片X线片(BWR)上的龋齿病变,其中有80处龋齿病变。使用了两种不同的技术,即通过移动的手机在笔记本电脑上扫描静态BWR以及通过固定的手机在笔记本电脑上扫描移动的X线片。两种技术的灵敏度/精度/F1分数的平均值分别为0.75/0.846和0.795。发现使用后置手机摄像头的AI程序在100张BWR上实时检测到75%的龋齿病变,精度为84.6%。因此,将AI与智能手机应用程序结合使用对龋齿诊断很有用,这种方式易于获取、使用方便且速度快。

相似文献

9
Cost-effectiveness of Artificial Intelligence for Proximal Caries Detection.人工智能在近龋检测中的成本效益。
J Dent Res. 2021 Apr;100(4):369-376. doi: 10.1177/0022034520972335. Epub 2020 Nov 16.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验