Suppr超能文献

评估人工智能在一系列成像模式下检测龋齿的诊断准确性:一项荟萃分析的伞状综述。

Examining the diagnostic accuracy of artificial intelligence for detecting dental caries across a range of imaging modalities: An umbrella review with meta-analysis.

作者信息

Arzani Sarah, Karimi Ali, Iranmanesh Pedram, Yazdi Maryam, Sabeti Mohammad A, Nekoofar Mohammad Hossein, Kolahi Jafar, Bang Heejung, Dummer Paul M H

机构信息

Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

Maxillogram Maxillofacial Surgery, Implantology and Biomaterial Research Foundation, Istanbul, Turkey.

出版信息

PLoS One. 2025 Aug 13;20(8):e0329986. doi: 10.1371/journal.pone.0329986. eCollection 2025.

Abstract

The objective of this systematic review was to systematically collect and analyze multiple published systematic reviews to address the following research question "Are artificial intelligence (AI) algorithms effective for the detection of dental caries?". A systematic search of five electronic databases, including the Cochrane Library, Embase, PubMed, Scopus, and Web of Science, was conducted until October 15, 2024, with a language restriction to English. All fourteen systematic reviews which assessed the performance of AI algorithms for the detection of dental caries were included. From 137 primary original research studies within the systematic reviews, only 20 reported the data necessary for inclusion in the meta-analysis. Pooled sensitivity was 0.85 (95% Confidence Interval (CI): 0.83 to 0.93), specificity was 0.90 (95% CI: 0.85 to 0.95), and log diagnostic odds ratio was 4.37 (95% CI: 3.16 to 6.27). Area under the summary ROC curve was 0.86. Positive post-test probability was 79% and negative post-test probability was 6%. In conclusion, this meta-analysis has revealed that caries diagnosis using AI is accurate and its use in clinical practice is justified. Future studies should focus on specific subpopulations, depth of caries, and real-world performance validation to further improve the accuracy of AI in caries diagnosis.

摘要

本系统评价的目的是系统收集和分析多篇已发表的系统评价,以回答以下研究问题:“人工智能(AI)算法在检测龋齿方面是否有效?”。对五个电子数据库进行了系统检索,包括Cochrane图书馆、Embase、PubMed、Scopus和Web of Science,检索截至2024年10月15日,语言限制为英语。纳入了所有十四篇评估AI算法检测龋齿性能的系统评价。在这些系统评价中的137项原发性原始研究中,只有20项报告了纳入荟萃分析所需的数据。合并敏感度为0.85(95%置信区间(CI):0.83至0.93),特异度为0.90(95%CI:0.85至0.95),对数诊断比值比为4.37(95%CI:3.16至6.27)。汇总ROC曲线下面积为0.86。检验后阳性概率为79%,检验后阴性概率为6%。总之,这项荟萃分析表明,使用AI进行龋齿诊断是准确的,其在临床实践中的应用是合理的。未来的研究应关注特定亚人群、龋齿深度和实际性能验证,以进一步提高AI在龋齿诊断中的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d58/12349118/0224f4d8cd7f/pone.0329986.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验