Suppr超能文献

利用新型联邦学习框架评估与照护地点相关的肾移植失败中的种族差异。

Evaluating site-of-care-related racial disparities in kidney graft failure using a novel federated learning framework.

机构信息

The Center for Health AI and Synthesis of Evidence (CHASE), Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States.

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States.

出版信息

J Am Med Inform Assoc. 2024 May 20;31(6):1303-1312. doi: 10.1093/jamia/ocae075.

Abstract

OBJECTIVES

Racial disparities in kidney transplant access and posttransplant outcomes exist between non-Hispanic Black (NHB) and non-Hispanic White (NHW) patients in the United States, with the site of care being a key contributor. Using multi-site data to examine the effect of site of care on racial disparities, the key challenge is the dilemma in sharing patient-level data due to regulations for protecting patients' privacy.

MATERIALS AND METHODS

We developed a federated learning framework, named dGEM-disparity (decentralized algorithm for Generalized linear mixed Effect Model for disparity quantification). Consisting of 2 modules, dGEM-disparity first provides accurately estimated common effects and calibrated hospital-specific effects by requiring only aggregated data from each center and then adopts a counterfactual modeling approach to assess whether the graft failure rates differ if NHB patients had been admitted at transplant centers in the same distribution as NHW patients were admitted.

RESULTS

Utilizing United States Renal Data System data from 39 043 adult patients across 73 transplant centers over 10 years, we found that if NHB patients had followed the distribution of NHW patients in admissions, there would be 38 fewer deaths or graft failures per 10 000 NHB patients (95% CI, 35-40) within 1 year of receiving a kidney transplant on average.

DISCUSSION

The proposed framework facilitates efficient collaborations in clinical research networks. Additionally, the framework, by using counterfactual modeling to calculate the event rate, allows us to investigate contributions to racial disparities that may occur at the level of site of care.

CONCLUSIONS

Our framework is broadly applicable to other decentralized datasets and disparities research related to differential access to care. Ultimately, our proposed framework will advance equity in human health by identifying and addressing hospital-level racial disparities.

摘要

目的

在美国,非西班牙裔黑人(NHB)和非西班牙裔白人(NHW)患者之间在肾移植机会和移植后结局方面存在种族差异,而医疗机构的选择是造成这种差异的主要原因。利用多站点数据来研究医疗机构选择对种族差异的影响,其主要挑战是由于保护患者隐私的规定,在共享患者水平数据方面存在困境。

材料和方法

我们开发了一个联邦学习框架,名为 dGEM-disparity(用于差异量化的广义线性混合效应模型的去中心化算法)。该框架由 2 个模块组成,dGEM-disparity 首先通过仅要求每个中心提供汇总数据,提供准确估计的共同效应和校准的医院特定效应,然后采用反事实建模方法来评估如果 NHB 患者在与 NHW 患者相同分布的移植中心接受治疗,移植后 1 年内的移植失败率是否会有所不同。

结果

利用美国肾脏数据系统在 10 年内来自 73 个移植中心的 39043 名成年患者的数据,我们发现,如果 NHB 患者按照 NHW 患者的入院分布情况进行安排,那么与 NHW 患者相比,每 10000 名 NHB 患者中在移植后 1 年内将减少 38 例死亡或移植失败(95%CI,35-40)。

讨论

所提出的框架促进了临床研究网络中的高效合作。此外,该框架通过使用反事实建模来计算事件发生率,使我们能够研究医疗机构选择可能导致的种族差异的贡献。

结论

我们的框架广泛适用于其他分散数据集和与获得医疗服务机会差异相关的差异研究。最终,我们提出的框架将通过识别和解决医院层面的种族差异,推动人类健康公平。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验